These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18338786)

  • 1. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):514-22. PubMed ID: 18338786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):125-35. PubMed ID: 18098195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.
    Farhangdoust S; Zamanian A; Yasaei M; Khorami M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):453-60. PubMed ID: 25428095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting.
    Yin TJ; Jeyapalina S; Naleway SE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104717. PubMed ID: 34352488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze casting of hydroxyapatite-titania composites for bone substitutes.
    Yin TJ; Steyl SK; Howard J; Carlson K; Jeyapalina S; Naleway SE
    J Biomed Mater Res A; 2024 Mar; 112(3):473-483. PubMed ID: 37962005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study.
    Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC
    J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method.
    Macchetta A; Turner IG; Bowen CR
    Acta Biomater; 2009 May; 5(4):1319-27. PubMed ID: 19112055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.
    Yang TY; Lee JM; Yoon SY; Park HC
    J Mater Sci Mater Med; 2010 May; 21(5):1495-502. PubMed ID: 20099009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
    Elbadawi M; Shbeh M
    J Mech Behav Biomed Mater; 2018 Jan; 77():422-433. PubMed ID: 29024894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures.
    Fu Q; Rahaman MN; Bal BS; Brown RF
    J Mater Sci Mater Med; 2009 May; 20(5):1159-65. PubMed ID: 19115092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.
    Cox SC; Thornby JA; Gibbons GJ; Williams MA; Mallick KK
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():237-47. PubMed ID: 25492194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds.
    Conrad TL; Jaekel DJ; Kurtz SM; Roeder RK
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):576-83. PubMed ID: 23296754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.