BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 18338863)

  • 21. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis.
    Bayramoglu G; Karagoz B; Altintas B; Arica MY; Bicak N
    Bioprocess Biosyst Eng; 2011 Aug; 34(6):735-46. PubMed ID: 21336640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer.
    Ozmen EY; Yilmaz M
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):58-62. PubMed ID: 19091527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of acid anhydrides with carboxylic acids in enantioselective enzymatic esterification of racemic menthol.
    Xu J; Zhu J; Kawamoto T; Atsuo T; Hu Y
    Chin J Biotechnol; 1997; 13(4):263-9. PubMed ID: 9631262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles.
    Dyal A; Loos K; Noto M; Chang SW; Spagnoli C; Shafi KV; Ulman A; Cowman M; Gross RA
    J Am Chem Soc; 2003 Feb; 125(7):1684-5. PubMed ID: 12580578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of lipase from Candida cylindraceae and its use in the synthesis of menthol esters by transesterification.
    Gray CJ; Narang JS; Barker SA
    Enzyme Microb Technol; 1990 Oct; 12(10):800-7. PubMed ID: 1366804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.
    Zhang DH; Peng LJ; Wang Y; Li YQ
    Colloids Surf B Biointerfaces; 2015 May; 129():206-10. PubMed ID: 25863711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Optimize conditions and activities for neutrophil lipase immobilized by nano-silica dioxide].
    Jin J; Yang Y; Wu K; Wang H; Liu B; Yu Z
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):2003-7. PubMed ID: 20352981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15.
    Gao S; Wang Y; Diao X; Luo G; Dai Y
    Bioresour Technol; 2010 Jun; 101(11):3830-7. PubMed ID: 20116998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of ionic liquid physical properties on lipase activity and stability.
    Kaar JL; Jesionowski AM; Berberich JA; Moulton R; Russell AJ
    J Am Chem Soc; 2003 Apr; 125(14):4125-31. PubMed ID: 12670234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model of the pressure dependence of the enantioselectivity of Candida rugosalipase towards (+/-)-menthol.
    Kahlow UH; Schmid RD; Pleiss J
    Protein Sci; 2001 Oct; 10(10):1942-52. PubMed ID: 11567085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation and immobilization of lipase from Penicillium simplicissimum by selective adsorption on hydrophobic supports.
    Cunha AG; Fernández-Lorente G; Gutarra ML; Bevilaqua JV; Almeida RV; Paiva LM; Fernández-Lafuente R; Guisán JM; Freire DM
    Appl Biochem Biotechnol; 2009 May; 156(1-3):133-45. PubMed ID: 19037600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide.
    Liu KJ; Huang YR
    J Biotechnol; 2010 Apr; 146(4):215-20. PubMed ID: 20219605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving immobilization of lipase onto magnetic microspheres with moderate hydrophobicity/hydrophilicity.
    Zhang DH; Yuwen LX; Xie YL; Li W; Li XB
    Colloids Surf B Biointerfaces; 2012 Jan; 89():73-8. PubMed ID: 21955507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.
    Fernandez-Lorente G; Godoy CA; Mendes AA; Lopez-Gallego F; Grazu V; de Las Rivas B; Palomo JM; Hermoso J; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2008 Sep; 9(9):2553-61. PubMed ID: 18702542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.
    Palomo JM; Peñas MM; Fernández-Lorente G; Mateo C; Pisabarro AG; Fernández-Lafuente R; Ramírez L; Guisán JM
    Biomacromolecules; 2003; 4(2):204-10. PubMed ID: 12625713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic resolution of racemic 1-phenyl 1-propanol by lipase catalyzed enantioselective esterification reaction.
    Karadeniz F; Bayraktar E; Mehmetoglu U
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Oct; 38(5):288-93. PubMed ID: 20831353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Covalent attachment of Candida rugosa lipase on chemically modified hybrid matrix of polysiloxane-polyvinyl alcohol with different activating compounds.
    Santos JC; Mijone PD; Nunes GF; Perez VH; de Castro HF
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):229-36. PubMed ID: 17889514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion.
    Zeng C; Qi S; Li Z; Luo R; Yang B; Wang Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):939-46. PubMed ID: 25575761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and activity of Candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers.
    Deng HT; Xu ZK; Huang XJ; Wu J; Seta P
    Langmuir; 2004 Nov; 20(23):10168-73. PubMed ID: 15518509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.