BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18339312)

  • 1. Extraction, isolation and NMR data of the tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus harvested from a bioleaching reactor.
    Bode ML; Buddoo SR; Minnaar SH; du Plessis CA
    Chem Phys Lipids; 2008 Aug; 154(2):94-104. PubMed ID: 18339312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Isolation and Structure Elucidation of GDNT-β-Glu - Tetraether Lipid Fragment from Archaeal Sulfolobus Strains.
    Scholte A; Hübner C; Ströhl D; Scheufler O; Czich S; Börke JM; Hildebrand G; Liefeith K
    ChemistryOpen; 2021 Sep; 10(9):889-895. PubMed ID: 34468091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile distinction of neutral and acidic tetraether lipids in archaea membrane by halogen atom adduct ions in electrospray ionization mass spectrometry.
    Murae T; Takamatsu Y; Muraoka R; Endoh S; Yamauchi N
    J Mass Spectrom; 2002 Feb; 37(2):209-15. PubMed ID: 11857765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius.
    Sugai A; Sakuma R; Fukuda I; Kurosawa N; Itoh YH; Kon K; Ando S; Itoh T
    Lipids; 1995 Apr; 30(4):339-44. PubMed ID: 7609602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural complexity in isoprenoid glycerol dialkyl glycerol tetraether lipid cores of Sulfolobus and other archaea revealed by liquid chromatography-tandem mass spectrometry.
    Knappy CS; Barillà D; de Blaquiere JP; Morgan HW; Nunn CE; Suleman M; Tan CH; Keely BJ
    Chem Phys Lipids; 2012 Sep; 165(6):648-55. PubMed ID: 22776323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids.
    Lin YS; Lipp JS; Yoshinaga MY; Lin SH; Elvert M; Hinrichs KU
    Rapid Commun Mass Spectrom; 2010 Oct; 24(19):2817-26. PubMed ID: 20857440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling of archaebacterial bipolar tetraether lipid membranes.
    Gabriel JL; Chong PL
    Chem Phys Lipids; 2000 Apr; 105(2):193-200. PubMed ID: 10823467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of glycerol dialkyl nonitol tetraether from Sulfolobus acidocaldarius.
    Lo SL; Montague CE; Chang EL
    J Lipid Res; 1989 Jun; 30(6):944-9. PubMed ID: 2507722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH.
    Mikkelsen D; Kappler U; McEwan AG; Sly LI
    Syst Appl Microbiol; 2009 Oct; 32(7):501-13. PubMed ID: 19541445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage clamp studies on S-layer-supported tetraether lipid membranes.
    Schuster B; Pum D; Sleytr UB
    Biochim Biophys Acta; 1998 Feb; 1369(1):51-60. PubMed ID: 9556347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaebacterial tetraetherlipid liposomes.
    Ozcetin A; Mutlu S; Bakowsky U
    Methods Mol Biol; 2010; 605():87-96. PubMed ID: 20072874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.
    Zhou H; Zhang R; Hu P; Zeng W; Xie Y; Wu C; Qiu G
    J Appl Microbiol; 2008 Aug; 105(2):591-601. PubMed ID: 18422958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1.
    Leone S; Molinaro A; Lindner B; Romano I; Nicolaus B; Parrilli M; Lanzetta R; Holst O
    Glycobiology; 2006 Aug; 16(8):766-75. PubMed ID: 16636007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching with ultrasound.
    Swamy KM; Narayana KL; Misra VN
    Ultrason Sonochem; 2005 Mar; 12(4):301-6. PubMed ID: 15501714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus.
    Orell A; Remonsellez F; Arancibia R; Jerez CA
    Archaea; 2013; 2013():289236. PubMed ID: 23509422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerogalactolipids from the fruit of Lycium barbarum.
    Gao Z; Ali Z; Khan IA
    Phytochemistry; 2008 Nov; 69(16):2856-61. PubMed ID: 18977006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea.
    Schubotz F; Wakeham SG; Lipp JS; Fredricks HF; Hinrichs KU
    Environ Microbiol; 2009 Oct; 11(10):2720-34. PubMed ID: 19624710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor.
    Zhou HB; Zeng WM; Yang ZF; Xie YJ; Qiu GZ
    Bioresour Technol; 2009 Jan; 100(2):515-20. PubMed ID: 18657418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avrainvilloside, a 6-deoxy-6-aminoglucoglycerolipid from the green alga Avrainvillea nigricans.
    Andersen RJ; Taglialatela-Scafati O
    J Nat Prod; 2005 Sep; 68(9):1428-30. PubMed ID: 16180830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.