BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 18339569)

  • 1. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac.
    Konefał A; Orlef A; Dybek M; Maniakowski Z; Polaczek-Grelik K; Zipper W
    Phys Med; 2008 Dec; 24(4):212-8. PubMed ID: 18339569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs.
    Konefal A; Polaczek-Grelik K; Zipper W
    Radiat Prot Dosimetry; 2008; 128(2):133-45. PubMed ID: 17569692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of radiation exposure outside the radiotherapeutic room during medical accelerator beam emission with the use of TL detectors (radiation exposure outside a LINAC room).
    Polaczek-Grelik K; Kozłowska B; Dybek M; Obryk B; Ciba A
    Radiat Prot Dosimetry; 2013 Sep; 156(3):268-76. PubMed ID: 23554424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy.
    Loi G; Dominietto M; Cannillo B; Ciocca M; Krengli M; Mones E; Negri E; Brambilla M
    Phys Med Biol; 2006 Feb; 51(3):695-702. PubMed ID: 16424589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers.
    Konefał A; Orlef A; Laciak M; Ciba A; Szewczuk M
    Rep Pract Oncol Radiother; 2012 Nov; 17(6):339-46. PubMed ID: 24669311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The filter/moderator arrangement-optimisation for the boron-neutron capture therapy (BNCT).
    Tracz G; Dabkowski L; Dworak D; Pytel K; Woźnicka U
    Radiat Prot Dosimetry; 2004; 110(1-4):827-31. PubMed ID: 15353754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.
    Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M
    Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Health physics aspects of neutron activated components in a linear accelerator.
    Guo S; Ziemer PL
    Health Phys; 2004 May; 86(5 Suppl):S94-S102. PubMed ID: 15069298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator.
    Vanhavere F; Huyskens D; Struelens L
    Radiat Prot Dosimetry; 2004; 110(1-4):607-12. PubMed ID: 15353716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of neutron spectra from medical linear accelerators.
    Facure A; Falcão RC; Silva AX; Crispim VR; Vitorelli JC
    Appl Radiat Isot; 2005 Jan; 62(1):69-72. PubMed ID: 15498687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The measurement of photoneutron dose in the vicinity of clinical linear accelerators.
    Rivera JC; Falcão RC; Dealmeida CE
    Radiat Prot Dosimetry; 2008; 130(4):403-9. PubMed ID: 18375468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.
    Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R
    Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam.
    Mesbahi A
    Appl Radiat Isot; 2009 Jan; 67(1):55-60. PubMed ID: 18760613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of ESR dosimetry for thermal neutron beams through the addition of gadolinium.
    Brai M; Marrale M; Gennaro G; Bartolotta A; D'Oca MC; Rosi G
    Phys Med Biol; 2007 Sep; 52(17):5219-30. PubMed ID: 17762082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the photoneutron field produced in a medical linear accelerator.
    Kim HS; Park YH; Koo BC; Kwon JW; Lee JS; Choi HS
    Radiat Prot Dosimetry; 2007; 123(3):323-8. PubMed ID: 17077093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation processes in a medical linear accelerator and spatial distribution of activation products.
    Fischer HW; Tabot BE; Poppe B
    Phys Med Biol; 2006 Dec; 51(24):N461-6. PubMed ID: 17148816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of Siemens PRIMUS photoneutron production.
    Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M
    Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations.
    Lacoste V
    Radiat Prot Dosimetry; 2007; 126(1-4):58-63. PubMed ID: 17578877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.