These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 18339674)

  • 1. NKX2.1 specifies cortical interneuron fate by activating Lhx6.
    Du T; Xu Q; Ocbina PJ; Anderson SA
    Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.
    Xu Q; Wonders CP; Anderson SA
    Development; 2005 Nov; 132(22):4987-98. PubMed ID: 16221724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon.
    Xu Q; Tam M; Anderson SA
    J Comp Neurol; 2008 Jan; 506(1):16-29. PubMed ID: 17990269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism.
    Gulacsi A; Anderson SA
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i89-95. PubMed ID: 16766713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.
    Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA
    Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
    Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z
    Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence.
    Wonders CP; Taylor L; Welagen J; Mbata IC; Xiang JZ; Anderson SA
    Dev Biol; 2008 Feb; 314(1):127-36. PubMed ID: 18155689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and molecular specification of striatal interneurons.
    Marin O; Anderson SA; Rubenstein JL
    J Neurosci; 2000 Aug; 20(16):6063-76. PubMed ID: 10934256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position.
    Vogt D; Hunt RF; Mandal S; Sandberg M; Silberberg SN; Nagasawa T; Yang Z; Baraban SC; Rubenstein JL
    Neuron; 2014 Apr; 82(2):350-64. PubMed ID: 24742460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations.
    Nery S; Fishell G; Corbin JG
    Nat Neurosci; 2002 Dec; 5(12):1279-87. PubMed ID: 12411960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin and specification of cortical interneurons.
    Wonders CP; Anderson SA
    Nat Rev Neurosci; 2006 Sep; 7(9):687-96. PubMed ID: 16883309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates.
    Xu Q; Guo L; Moore H; Waclaw RR; Campbell K; Anderson SA
    Neuron; 2010 Feb; 65(3):328-40. PubMed ID: 20159447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors.
    Nóbrega-Pereira S; Kessaris N; Du T; Kimura S; Anderson SA; Marín O
    Neuron; 2008 Sep; 59(5):733-45. PubMed ID: 18786357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes.
    Liodis P; Denaxa M; Grigoriou M; Akufo-Addo C; Yanagawa Y; Pachnis V
    J Neurosci; 2007 Mar; 27(12):3078-89. PubMed ID: 17376969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ongoing expression of Nkx2.1 in the postnatal mouse forebrain: potential for understanding NKX2.1 haploinsufficiency in humans?
    Magno L; Catanzariti V; Nitsch R; Krude H; Naumann T
    Brain Res; 2009 Dec; 1304():164-86. PubMed ID: 19766601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic analysis of transcriptional networks directing progression of cell states during MGE development.
    Sandberg M; Taher L; Hu J; Black BL; Nord AS; Rubenstein JLR
    Neural Dev; 2018 Sep; 13(1):21. PubMed ID: 30217225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons.
    Elbert A; Vogt D; Watson A; Levy M; Jiang Y; Brûlé E; Rowland ME; Rubenstein J; Bérubé NG
    J Neurosci; 2019 Jan; 39(1):177-192. PubMed ID: 30377227
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Angara K; Pai EL; Bilinovich SM; Stafford AM; Nguyen JT; Li KX; Paul A; Rubenstein JL; Vogt D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6189-6195. PubMed ID: 32123116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo characterization of the Nkx2.1 promoter/enhancer elements in transgenic mice.
    Pan Q; Li C; Xiao J; Kimura S; Rubenstein J; Puelles L; Minoo P
    Gene; 2004 Apr; 331():73-82. PubMed ID: 15094193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.