These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18339748)

  • 1. Ten-microsecond molecular dynamics simulation of a fast-folding WW domain.
    Freddolino PL; Liu F; Gruebele M; Schulten K
    Biophys J; 2008 May; 94(10):L75-7. PubMed ID: 18339748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force field bias in protein folding simulations.
    Freddolino PL; Park S; Roux B; Schulten K
    Biophys J; 2009 May; 96(9):3772-80. PubMed ID: 19413983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing simplified proteins models of the hPin1 WW domain.
    Cecconi F; Guardiani C; Livi R
    Biophys J; 2006 Jul; 91(2):694-704. PubMed ID: 16648162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Mapping of the Folding Transition State of a WW Domain.
    Dave K; Jäger M; Nguyen H; Kelly JW; Gruebele M
    J Mol Biol; 2016 Apr; 428(8):1617-36. PubMed ID: 26880334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a beta-sheet protein toward the folding speed limit.
    Nguyen H; Jäger M; Kelly JW; Gruebele M
    J Phys Chem B; 2005 Aug; 109(32):15182-6. PubMed ID: 16852923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding mechanisms of individual beta-hairpins in a Go model of Pin1 WW domain by all-atom molecular dynamics simulations.
    Luo Z; Ding J; Zhou Y
    J Chem Phys; 2008 Jun; 128(22):225103. PubMed ID: 18554060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
    Zhu T; Zhang JZ; He X
    Phys Chem Chem Phys; 2014 Sep; 16(34):18163-9. PubMed ID: 25052367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of site-specific PEGylation on the conformational stability and folding rate of the Pin WW domain depends strongly on PEG oligomer length.
    Pandey BK; Smith MS; Torgerson C; Lawrence PB; Matthews SS; Watkins E; Groves ML; Prigozhin MB; Price JL
    Bioconjug Chem; 2013 May; 24(5):796-802. PubMed ID: 23578107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation.
    Zanetti-Polzi L; Davis CM; Gruebele M; Dyer RB; Amadei A; Daidone I
    FEBS Lett; 2017 Oct; 591(20):3265-3275. PubMed ID: 28881468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function-folding relationship in a WW domain.
    Jäger M; Zhang Y; Bieschke J; Nguyen H; Dendle M; Bowman ME; Noel JP; Gruebele M; Kelly JW
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10648-53. PubMed ID: 16807295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.
    Hu J; Chen T; Wang M; Chan HS; Zhang Z
    Phys Chem Chem Phys; 2017 May; 19(21):13629-13639. PubMed ID: 28530269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent.
    Yeh IC; Hummer G
    J Am Chem Soc; 2002 Jun; 124(23):6563-8. PubMed ID: 12047175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating the replica exchange method through an efficient all-pairs exchange.
    Brenner P; Sweet CR; VonHandorf D; Izaguirre JA
    J Chem Phys; 2007 Feb; 126(7):074103. PubMed ID: 17328589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of pH in structural changes for Pin1 protein: an insight from molecular dynamics study.
    Wang Y; Xi L; Yao J; Yang J; Du LF
    J Mol Model; 2014 Aug; 20(8):2376. PubMed ID: 25031083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain.
    Mortenson DE; Kreitler DF; Yun HG; Gellman SH; Forest KT
    Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2506-12. PubMed ID: 24311591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The key to predicting the stability of protein mutants lies in an accurate description and proper configurational sampling of the folded and denatured states.
    Eichenberger AP; van Gunsteren WF; Riniker S; von Ziegler L; Hansen N
    Biochim Biophys Acta; 2015 May; 1850(5):983-995. PubMed ID: 25239199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.