These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1833990)

  • 1. Active urea transport independent of H+ and Na+ transport in frog skin epithelium.
    Lacoste I; Dunel-Erb S; Harvey BJ; Laurent P; Ehrenfeld J
    Am J Physiol; 1991 Oct; 261(4 Pt 2):R898-906. PubMed ID: 1833990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
    Ehrenfeld J; Garcia-Romeu F; Harvey BJ
    J Physiol; 1985 Feb; 359():331-55. PubMed ID: 2582114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues.
    Ehrenfeld J; Cragoe EJ; Harvey BJ
    Pflugers Arch; 1987 Jun; 409(1-2):200-7. PubMed ID: 3039454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase.
    Harvey B; Lacoste I; Ehrenfeld J
    J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium.
    Ehrenfeld J; Lacoste I; Harvey BJ
    Pflugers Arch; 1989 May; 414(1):59-67. PubMed ID: 2786188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium.
    Ehrenfeld J; Lacoste I; Harvey BJ
    Biochim Biophys Acta; 1992 Apr; 1106(1):197-208. PubMed ID: 1374642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energization of sodium absorption by the H(+)-ATPase pump in mitochondria-rich cells of frog skin.
    Harvey BJ
    J Exp Biol; 1992 Nov; 172():289-309. PubMed ID: 1491227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation kinetics of sodium efflux across isolated frog skin.
    Biber TU; Mullen TL
    Am J Physiol; 1976 Oct; 231(4):995-1001. PubMed ID: 136208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active urea transport through isolated skins of frog and toad.
    Garcia-Romeu F; Masoni A; Isaia J
    Am J Physiol; 1981 Sep; 241(3):R114-23. PubMed ID: 6169283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens.
    Drewnowska K; Biber TU
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F424-31. PubMed ID: 3876034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride transport through the n onshort-circuited isolated skin of Rana esculenta.
    Garcia-Romeu F; Ehrenfeld J
    Am J Physiol; 1975 Mar; 228(3):845-9. PubMed ID: 1078757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of N-ethylmaleimide on the active transport of sodium and its permeability in the skin of Rana esculenta].
    Ardizzone C; Lippe C
    Boll Soc Ital Biol Sper; 1982 Oct; 58(20):1337-43. PubMed ID: 6984336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium.
    Harvey BJ; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):793-810. PubMed ID: 3265145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria-rich cells of frog skin in transport mechanisms: morphological and kinetic studies on transepithelial excretion of methylene blue.
    Ehrenfeld J; Masoni A; Garcia-Romeu F
    Am J Physiol; 1976 Jul; 231(1):120-6. PubMed ID: 1085569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of intracellular sodium and pH by the electrogenic H+ pump in frog skin.
    Harvey BJ; Ehrenfeld J
    Pflugers Arch; 1986 Apr; 406(4):362-6. PubMed ID: 2423951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheogenic sodium transport in a tight epithelium, the amphibian skin.
    Nagel W
    J Physiol; 1980 May; 302():281-95. PubMed ID: 6774086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active urea transport in toad skin is coupled to H+ gradients.
    Rapoport J; Chaimovitz C; Hays RM
    Am J Physiol; 1989 May; 256(5 Pt 2):F830-5. PubMed ID: 2524167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo Na+- and Cl minus-independent transport across the skin of Rana esculenta.
    Garcia-Romeu F; Ehrenfeld J
    Am J Physiol; 1975 Mar; 228(3):839-44. PubMed ID: 234692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.