These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. Le Roux N; Amar M; Fossier P J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512 [TBL] [Abstract][Full Text] [Related]
23. Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity. Leibold C; Kempter R Cereb Cortex; 2008 Jan; 18(1):67-77. PubMed ID: 17490993 [TBL] [Abstract][Full Text] [Related]
24. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability. Fall CP; Lewis TJ; Rinzel J Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392 [TBL] [Abstract][Full Text] [Related]
25. Presynaptic signal transduction pathways that modulate synaptic transmission. de Jong AP; Verhage M Curr Opin Neurobiol; 2009 Jun; 19(3):245-53. PubMed ID: 19559598 [TBL] [Abstract][Full Text] [Related]
26. Spike-driven synaptic dynamics generating working memory states. Amit DJ; Mongillo G Neural Comput; 2003 Mar; 15(3):565-96. PubMed ID: 12620158 [TBL] [Abstract][Full Text] [Related]
27. Persistent activity in neural networks with dynamic synapses. Barak O; Tsodyks M PLoS Comput Biol; 2007 Feb; 3(2):e35. PubMed ID: 17319739 [TBL] [Abstract][Full Text] [Related]
28. A cellular mechanism for graded persistent activity in a model neuron and its implications in working memory. Teramae JN; Fukai T J Comput Neurosci; 2005; 18(1):105-21. PubMed ID: 15789172 [TBL] [Abstract][Full Text] [Related]
29. [Mechanisms of the formation of long-periodicity oscillations in activity in nerve nets. Nets with pre- and postsynaptic inhibition]. Degtiarenko AM Neirofiziologiia; 1986; 18(3):392-402. PubMed ID: 3016574 [TBL] [Abstract][Full Text] [Related]
30. Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses. Del Giudice P; Fusi S; Mattia M J Physiol Paris; 2003; 97(4-6):659-81. PubMed ID: 15242673 [TBL] [Abstract][Full Text] [Related]
31. Time representing cortical activities: two models inspired by prefrontal persistent activity. Kitano K; Okamoto H; Fukai T Biol Cybern; 2003 May; 88(5):387-94. PubMed ID: 12750901 [TBL] [Abstract][Full Text] [Related]
32. Calcium channel regulation and presynaptic plasticity. Catterall WA; Few AP Neuron; 2008 Sep; 59(6):882-901. PubMed ID: 18817729 [TBL] [Abstract][Full Text] [Related]
33. Persistent neural activity: prevalence and mechanisms. Major G; Tank D Curr Opin Neurobiol; 2004 Dec; 14(6):675-84. PubMed ID: 15582368 [TBL] [Abstract][Full Text] [Related]
34. Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Volman V; Gerkin RC; Lau PM; Ben-Jacob E; Bi GQ Phys Biol; 2007 Jun; 4(2):91-103. PubMed ID: 17664654 [TBL] [Abstract][Full Text] [Related]
36. Alteration of synaptic transmission in the hippocampal-mPFC pathway during extinction trials of context-dependent fear memory in juvenile rat stress models. Koseki H; Matsumoto M; Togashi H; Miura Y; Fukushima K; Yoshioka M Synapse; 2009 Sep; 63(9):805-13. PubMed ID: 19504621 [TBL] [Abstract][Full Text] [Related]
38. A neural circuit model forming semantic network with exception using spike-timing-dependent plasticity of inhibitory synapses. Murakoshi K; Suganuma K Biosystems; 2007; 90(3):903-10. PubMed ID: 17643738 [TBL] [Abstract][Full Text] [Related]
39. Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Durstewitz D; Gabriel T Cereb Cortex; 2007 Apr; 17(4):894-908. PubMed ID: 16740581 [TBL] [Abstract][Full Text] [Related]
40. Eluding oblivion with smart stochastic selection of synaptic updates. Fusi S; Senn W Chaos; 2006 Jun; 16(2):026112. PubMed ID: 16822044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]