These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18341150)

  • 41. Accelerated carbonation of different size fractions of bottom ash from RDF incineration.
    Baciocchi R; Costa G; Lategano E; Marini C; Polettini A; Pomi R; Postorino P; Rocca S
    Waste Manag; 2010 Jul; 30(7):1310-7. PubMed ID: 20045306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.
    Forteza R; Far M; Seguí C; Cerdá V
    Waste Manag; 2004; 24(9):899-909. PubMed ID: 15504667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study on use of MSWI fly ash in ceramic tile.
    Haiying Z; Youcai Z; Jingyu Q
    J Hazard Mater; 2007 Mar; 141(1):106-14. PubMed ID: 16889889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.
    Jambhulkar HP; Juwarkar AA
    Ecotoxicol Environ Saf; 2009 May; 72(4):1122-8. PubMed ID: 19171381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.
    Xia Y; He P; Shao L; Zhang H
    J Environ Sci (China); 2017 Feb; 52():178-189. PubMed ID: 28254036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Partitioning characteristics and particle size distributions of heavy metals in the O2/RFG waste incineration system.
    Chen JC; Huang JS
    J Hazard Mater; 2009 Dec; 172(2-3):826-32. PubMed ID: 19679392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger.
    Yang J; Wang Q; Wang Q; Wu T
    Bioresour Technol; 2009 Jan; 100(1):254-60. PubMed ID: 18599287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture.
    Pasquini MW; Alexander MJ
    Sci Total Environ; 2004 Feb; 319(1-3):225-40. PubMed ID: 14967513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge.
    Qian G; Cao Y; Chui P; Tay J
    J Hazard Mater; 2006 Feb; 129(1-3):274-81. PubMed ID: 16242842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mass-balance estimation of heavy metals and selected anions at a landfill receiving MSWI bottom ash and mixed construction wastes.
    Oygard JK; Gjengedal E; Måge A
    J Hazard Mater; 2005 Aug; 123(1-3):70-5. PubMed ID: 15950379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of calcium chloride on the thermal behavior of heavy and alkali metals in sewage sludge incineration.
    Han J; Xu M; Yao H; Furuuchi M; Sakano T; Kim HJ
    Waste Manag; 2008; 28(5):833-9. PubMed ID: 17412581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of Nutrient and Metal Loadings with the Application of Swine Manure Slurries and Their Liquid Separates to Soils.
    Kumaragamage D; Akinremi OO; Racz GJ
    J Environ Qual; 2016 Sep; 45(5):1769-1775. PubMed ID: 27695738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash.
    Wang Q; Yang J; Wang Q; Wu T
    J Hazard Mater; 2009 Mar; 162(2-3):812-8. PubMed ID: 18599204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal treatment of bottom ash from the incineration of municipal solid waste: retention of Cs(I), Cd(II), Pb(II) and Cr(III).
    Peña R; Guerrero A; Goñi S
    J Hazard Mater; 2006 Feb; 129(1-3):151-7. PubMed ID: 16194594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alteration of municipal solid waste incineration bottom ash focusing on the evolution of iron-rich constituents.
    Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F
    Waste Manag; 2011; 31(9-10):1992-2000. PubMed ID: 21620687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars.
    Uchimiya M; Cantrell KB; Hunt PG; Novak JM; Chang S
    J Environ Qual; 2012; 41(4):1138-49. PubMed ID: 22751056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.
    Vogel C; Adam C
    Environ Sci Technol; 2011 Sep; 45(17):7445-50. PubMed ID: 21819089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.
    Havukainen J; Nguyen MT; Hermann L; Horttanainen M; Mikkilä M; Deviatkin I; Linnanen L
    Waste Manag; 2016 Mar; 49():221-229. PubMed ID: 26810030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.