These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18341319)

  • 1. Complex of calcium receptor blocker nifedipine with glycyrrhizic acid.
    Polyakov NE; Khan VK; Taraban MB; Leshina TV
    J Phys Chem B; 2008 Apr; 112(14):4435-40. PubMed ID: 18341319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation of lappaconitine with glycyrrhizic acid: stability and reactivity studies.
    Polyakov NE; Khan VK; Taraban MB; Leshina TV; Salakhutdinov NF; Tolstikov GA
    J Phys Chem B; 2005 Dec; 109(51):24526-30. PubMed ID: 16375457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-guest complexes of carotenoids with beta-glycyrrhizic acid.
    Polyakov NE; Leshina TV; Salakhutdinov NF; Kispert LD
    J Phys Chem B; 2006 Apr; 110(13):6991-8. PubMed ID: 16571013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-CIDNP study of the interaction of tyrosine with nifedipine. An attempt to model the binding between calcium receptor and calcium antagonist nifedipine.
    Polyakov NE; Taraban MB; Leshina TV
    Photochem Photobiol; 2004; 80(3):565-71. PubMed ID: 15623344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycyrrhizic acid on lappaconitine phototransformation.
    Kornievskaya VS; Kruppa AI; Polyakov NE; Leshina TV
    J Phys Chem B; 2007 Oct; 111(39):11447-52. PubMed ID: 17824688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Improvement of the pharmacological activity of nifedipine by mechanochemical complexation with glycyrrhizic acid].
    Tolstikova TG; Khvostov MV; Bryzgalov AO; Dushkin AV; Meteleva ES
    Biomed Khim; 2010; 56(2):187-94. PubMed ID: 21341507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Sensitive Glycyrrhizin Based Vesicles for Nifedipine Delivery.
    Selyutina OY; Mastova AV; Shelepova EA; Polyakov NE
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the Ca2+ interaction modes of the nifedipine calcium channel antagonist.
    Liu H; Zhang L; Li P; Cukier RI; Bu Y
    Chemphyschem; 2007 Feb; 8(2):304-14. PubMed ID: 17177225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geldanamycin inhibits tyrosine phosphorylation-dependent NF-kappaB activation.
    Crèvecoeur J; Merville MP; Piette J; Gloire G
    Biochem Pharmacol; 2008 Jun; 75(11):2183-91. PubMed ID: 18455150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of glycyrrhizin and glycyrrhetinic acid with DNA.
    Nafisi S; Bonsaii M; Manouchehri F; Abdi K
    DNA Cell Biol; 2012 Jan; 31(1):114-21. PubMed ID: 22074129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of gymnemic acid with cyclodextrins analyzed by isothermal titration calorimetry, NMR and dynamic light scattering.
    Izutani Y; Kanaori K; Imoto T; Oda M
    FEBS J; 2005 Dec; 272(23):6154-60. PubMed ID: 16302978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and molecular dynamics characterization of glycyrrhizin membrane-modifying activity.
    Selyutina OY; Apanasenko IE; Kim AV; Shelepova EA; Khalikov SS; Polyakov NE
    Colloids Surf B Biointerfaces; 2016 Nov; 147():459-466. PubMed ID: 27580071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical stabilities of some dihydropyridine calcium-channel blockers in powdered pharmaceutical tablets.
    Kawabe Y; Nakamura H; Hino E; Suzuki S
    J Pharm Biomed Anal; 2008 Jul; 47(3):618-24. PubMed ID: 18339506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability, water exchange, and anion binding studies on lanthanide(III) complexes with a macrocyclic ligand based on 1,7-diaza-12-crown-4: extremely fast water exchange on the Gd3+ complex.
    Pálinkás Z; Roca-Sabio A; Mato-Iglesias M; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T; Tóth E
    Inorg Chem; 2009 Sep; 48(18):8878-89. PubMed ID: 19655713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation property of glycyrrhizic acid and its interaction with cyclodextrins analyzed by dynamic light scattering, isothermal titration calorimetry, and NMR.
    Izutani Y; Kanaori K; Oda M
    Carbohydr Res; 2014 Jun; 392():25-30. PubMed ID: 24844630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel.
    Hussain M
    Curr Drug Deliv; 2019; 16(7):618-627. PubMed ID: 30868954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug.
    Selyutina OY; Polyakov NE
    Int J Pharm; 2019 Mar; 559():271-279. PubMed ID: 30690130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations.
    Lindfors L; Forssén S; Skantze P; Skantze U; Zackrisson A; Olsson U
    Langmuir; 2006 Jan; 22(3):911-6. PubMed ID: 16430248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of Ga(III), In(III), and Fe(III) complexes of triaza-macrocycle based ligands with N3S3 donor set.
    Notni J; Pohle K; Peters JA; Görls H; Platas-Iglesias C
    Inorg Chem; 2009 Apr; 48(7):3257-67. PubMed ID: 19281197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes.
    Blake S; Capone R; Mayer M; Yang J
    Bioconjug Chem; 2008 Aug; 19(8):1614-24. PubMed ID: 18630940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.