BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18341358)

  • 1. Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry.
    Marquis BJ; McFarland AD; Braun KL; Haynes CL
    Anal Chem; 2008 May; 80(9):3431-7. PubMed ID: 18341358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry.
    Marquis BJ; Liu Z; Braun KL; Haynes CL
    Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of co-culture of fibroblasts on mast cell exocytotic release characteristics as evaluated by carbon-fiber microelectrode amperometry.
    Marquis BJ; Haynes CL
    Biophys Chem; 2008 Sep; 137(1):63-9. PubMed ID: 18653272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effects of immunotoxicants using carbon fiber microelectrode amperometry.
    Marquis BJ; Haynes CL
    Anal Bioanal Chem; 2010 Dec; 398(7-8):2979-85. PubMed ID: 20953775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration.
    Marquis BJ; Maurer-Jones MA; Braun KL; Haynes CL
    Analyst; 2009 Nov; 134(11):2293-300. PubMed ID: 19838418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.
    Love SA; Haynes CL
    Anal Bioanal Chem; 2010 Sep; 398(2):677-88. PubMed ID: 20428848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional assessment of metal oxide nanoparticle toxicity in immune cells.
    Maurer-Jones MA; Lin YS; Haynes CL
    ACS Nano; 2010 Jun; 4(6):3363-73. PubMed ID: 20481555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.
    Adams KL; Jena BK; Percival SJ; Zhang B
    Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantal corelease of histamine and 5-hydroxytryptamine from mast cells and the effects of prior incubation.
    Pihel K; Hsieh S; Jorgenson JW; Wightman RM
    Biochemistry; 1998 Jan; 37(4):1046-52. PubMed ID: 9454595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.
    Love SA; Liu Z; Haynes CL
    Analyst; 2012 Jul; 137(13):3004-10. PubMed ID: 22382603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantal release of serotonin from platelets.
    Ge S; White JG; Haynes CL
    Anal Chem; 2009 Apr; 81(8):2935-43. PubMed ID: 19364141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell analysis of mast cell degranulation induced by airway smooth muscle-secreted chemokines.
    Manning BM; Meyer AF; Gruba SM; Haynes CL
    Biochim Biophys Acta; 2015 Sep; 1850(9):1862-8. PubMed ID: 25986989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of release of serotonin from isolated secretory granules. I. Amperometric detection of serotonin from electroporated granules.
    Marszalek PE; Farrell B; Verdugo P; Fernandez JM
    Biophys J; 1997 Sep; 73(3):1160-8. PubMed ID: 9284283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-fiber microelectrode amperometry reveals sickle-cell-induced inflammation and chronic morphine effects on single mast cells.
    Manning BM; Hebbel RP; Gupta K; Haynes CL
    ACS Chem Biol; 2012 Mar; 7(3):543-51. PubMed ID: 22217155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protracted elimination of gold nanoparticles from mouse liver.
    Sadauskas E; Danscher G; Stoltenberg M; Vogel U; Larsen A; Wallin H
    Nanomedicine; 2009 Jun; 5(2):162-9. PubMed ID: 19217434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size.
    Sonavane G; Tomoda K; Makino K
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles.
    Ibañez FJ; Zamborini FP
    ACS Nano; 2008 Aug; 2(8):1543-52. PubMed ID: 19206357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormones in the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat peritoneal mast cells.
    Csaba G; Kovács P; Pállinger E
    Life Sci; 2006 Mar; 78(16):1871-7. PubMed ID: 16332378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.