BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18342303)

  • 1. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo.
    Blum Y; Belting HG; Ellertsdottir E; Herwig L; Lüders F; Affolter M
    Dev Biol; 2008 Apr; 316(2):312-22. PubMed ID: 18342303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish embryo intersegmental vessels: a tool for investigating sprouting angiogenesis.
    Tobia C; Gariano G; Guerra J; Presta M
    Methods Mol Biol; 2015; 1214():173-84. PubMed ID: 25468604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning of angiogenesis in the zebrafish embryo.
    Childs S; Chen JN; Garrity DM; Fishman MC
    Development; 2002 Feb; 129(4):973-82. PubMed ID: 11861480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo.
    Herwig L; Blum Y; Krudewig A; Ellertsdottir E; Lenard A; Belting HG; Affolter M
    Curr Biol; 2011 Nov; 21(22):1942-8. PubMed ID: 22079115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis.
    Wang Y; Kaiser MS; Larson JD; Nasevicius A; Clark KJ; Wadman SA; Roberg-Perez SE; Ekker SC; Hackett PB; McGrail M; Essner JJ
    Development; 2010 Sep; 137(18):3119-28. PubMed ID: 20736288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell analysis of endothelial morphogenesis in vivo.
    Yu JA; Castranova D; Pham VN; Weinstein BM
    Development; 2015 Sep; 142(17):2951-61. PubMed ID: 26253401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.
    Kochhan E; Lenard A; Ellertsdottir E; Herwig L; Affolter M; Belting HG; Siekmann AF
    PLoS One; 2013; 8(10):e75060. PubMed ID: 24146748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial cell self-fusion during vascular pruning.
    Lenard A; Daetwyler S; Betz C; Ellertsdottir E; Belting HG; Huisken J; Affolter M
    PLoS Biol; 2015 Apr; 13(4):e1002126. PubMed ID: 25884426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a PKCζ/β-catenin complex in endothelial cells promotes angiopoietin-1-induced collective directional migration and angiogenic sprouting.
    Oubaha M; Lin MI; Margaron Y; Filion D; Price EN; Zon LI; Côté JF; Gratton JP
    Blood; 2012 Oct; 120(16):3371-81. PubMed ID: 22936663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish genetics and formation of embryonic vasculature.
    Zhong TP
    Curr Top Dev Biol; 2005; 71():53-81. PubMed ID: 16344102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial tubes assemble from intracellular vacuoles in vivo.
    Kamei M; Saunders WB; Bayless KJ; Dye L; Davis GE; Weinstein BM
    Nature; 2006 Jul; 442(7101):453-6. PubMed ID: 16799567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal Flt1 tyrosine kinase activity is a positive regulator of endothelial survival and vascularization during zebrafish embryogenesis.
    Li S; Zhou XL; Dang YY; Kwan YW; Chan SW; Leung GP; Lee SM; Hoi MP
    Biochim Biophys Acta; 2015 Feb; 1850(2):373-84. PubMed ID: 25450186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D quantitative analyses of angiogenic sprout growth dynamics.
    Shirinifard A; McCollum CW; Bolin MB; Gustafsson JÅ; Glazier JA; Clendenon SG
    Dev Dyn; 2013 May; 242(5):518-26. PubMed ID: 23417958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic interactions among Plexins regulate the timing of intersegmental vessel formation.
    Lamont RE; Lamont EJ; Childs SJ
    Dev Biol; 2009 Jul; 331(2):199-209. PubMed ID: 19422817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TRPC1 is essential for in vivo angiogenesis in zebrafish.
    Yu PC; Gu SY; Bu JW; Du JL
    Circ Res; 2010 Apr; 106(7):1221-32. PubMed ID: 20185799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. meis1 regulates the development of endothelial cells in zebrafish.
    Minehata K; Kawahara A; Suzuki T
    Biochem Biophys Res Commun; 2008 Oct; 374(4):647-52. PubMed ID: 18656453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis.
    Lenard A; Ellertsdottir E; Herwig L; Krudewig A; Sauteur L; Belting HG; Affolter M
    Dev Cell; 2013 Jun; 25(5):492-506. PubMed ID: 23763948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish.
    Jin SW; Beis D; Mitchell T; Chen JN; Stainier DY
    Development; 2005 Dec; 132(23):5199-209. PubMed ID: 16251212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope.
    Qin X; Chen C; Wang L; Chen X; Liang Y; Jin X; Pan W; Liu Z; Li H; Yang G
    Biochem Biophys Res Commun; 2021 Jun; 557():8-13. PubMed ID: 33857842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing the cell-cycle progression of endothelial cells in zebrafish.
    Fukuhara S; Zhang J; Yuge S; Ando K; Wakayama Y; Sakaue-Sawano A; Miyawaki A; Mochizuki N
    Dev Biol; 2014 Sep; 393(1):10-23. PubMed ID: 24975012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.