BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18342303)

  • 21. Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization.
    Phng LK; Gebala V; Bentley K; Philippides A; Wacker A; Mathivet T; Sauteur L; Stanchi F; Belting HG; Affolter M; Gerhardt H
    Dev Cell; 2015 Jan; 32(1):123-32. PubMed ID: 25584798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immediate and long-term consequences of vascular toxicity during zebrafish development.
    Tal TL; McCollum CW; Harris PS; Olin J; Kleinstreuer N; Wood CE; Hans C; Shah S; Merchant FA; Bondesson M; Knudsen TB; Padilla S; Hemmer MJ
    Reprod Toxicol; 2014 Sep; 48():51-61. PubMed ID: 24907688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment.
    Helker CS; Schuermann A; Karpanen T; Zeuschner D; Belting HG; Affolter M; Schulte-Merker S; Herzog W
    Development; 2013 Jul; 140(13):2776-86. PubMed ID: 23698350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro.
    Hu G; Tang J; Zhang B; Lin Y; Hanai J; Galloway J; Bedell V; Bahary N; Han Z; Ramchandran R; Thisse B; Thisse C; Zon LI; Sukhatme VP
    J Cell Sci; 2006 Oct; 119(Pt 19):4117-26. PubMed ID: 16968741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiogenesis in zebrafish.
    Schuermann A; Helker CS; Herzog W
    Semin Cell Dev Biol; 2014 Jul; 31():106-14. PubMed ID: 24813365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins.
    Huang CC; Lawson ND; Weinstein BM; Johnson SL
    Dev Biol; 2003 Dec; 264(1):263-74. PubMed ID: 14623247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7.
    Charpentier MS; Tandon P; Trincot CE; Koutleva EK; Conlon FL
    PLoS One; 2015; 10(2):e0116086. PubMed ID: 25705891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Egfl7 knockdown causes defects in the extension and junctional arrangements of endothelial cells during zebrafish vasculogenesis.
    De Mazière A; Parker L; Van Dijk S; Ye W; Klumperman J
    Dev Dyn; 2008 Mar; 237(3):580-91. PubMed ID: 18224713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the zebrafish lymphatic system requires VEGFC signaling.
    Küchler AM; Gjini E; Peterson-Maduro J; Cancilla B; Wolburg H; Schulte-Merker S
    Curr Biol; 2006 Jun; 16(12):1244-8. PubMed ID: 16782017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development.
    Wang CH; Chen IH; Kuo MW; Su PT; Lai ZY; Wang CH; Huang WC; Hoffman J; Kuo CJ; You MS; Chuang YJ
    Dev Dyn; 2011 Jun; 240(6):1412-21. PubMed ID: 21520329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells.
    Zhao D; Qin C; Fan X; Li Y; Gu B
    Eur J Pharmacol; 2014 Jan; 723():360-7. PubMed ID: 24239714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paeoniflorin Promotes Angiogenesis in A Vascular Insufficiency Model of Zebrafish in vivo and in Human Umbilical Vein Endothelial Cells in vitro.
    Xin QQ; Yang BR; Zhou HF; Wang Y; Yi BW; Cong WH; Lee SM; Chen KJ
    Chin J Integr Med; 2018 Jul; 24(7):494-501. PubMed ID: 27286711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pro-angiogenic activity of isoliquiritin on HUVECs in vitro and zebrafish in vivo through Raf/MEK signaling pathway.
    Zhang XH; Li CY; Lin QH; He ZH; Feng F; He MF
    Life Sci; 2019 Apr; 223():128-136. PubMed ID: 30876941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resveratrol derivative, trans-3,5,4'-trimethoxystilbene, exerts antiangiogenic and vascular-disrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation.
    Alex D; Leong EC; Zhang ZJ; Yan GT; Cheng SH; Leong CW; Li ZH; Lam KH; Chan SW; Lee SM
    J Cell Biochem; 2010 Feb; 109(2):339-46. PubMed ID: 20014068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis.
    Shi Y; Duan X; Xu G; Wang X; Wei G; Dong S; Xie G; Liu D
    Angiogenesis; 2019 May; 22(2):211-221. PubMed ID: 30656567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maternal and zygotic control of zebrafish dorsoventral axial patterning.
    Langdon YG; Mullins MC
    Annu Rev Genet; 2011; 45():357-77. PubMed ID: 21942367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation.
    Pollard SM; Parsons MJ; Kamei M; Kettleborough RN; Thomas KA; Pham VN; Bae MK; Scott A; Weinstein BM; Stemple DL
    Dev Biol; 2006 Jan; 289(1):64-76. PubMed ID: 16321372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos.
    Sumoy L; Keasey JB; Dittman TD; Kimelman D
    Mech Dev; 1997 Apr; 63(1):15-27. PubMed ID: 9178253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ERK activation in endothelial cells is a novel marker during neovasculogenesis.
    Nagasawa-Masuda A; Terai K
    Genes Cells; 2016 Nov; 21(11):1164-1175. PubMed ID: 27696620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chapter 4. Using the zebrafish to study vessel formation.
    McKinney MC; Weinstein BM
    Methods Enzymol; 2008; 444():65-97. PubMed ID: 19007661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.