These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 18342911)
1. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Cao L; Jiang M; Zeng Z; Du A; Tan H; Liu Y Chemosphere; 2008 Apr; 71(9):1769-73. PubMed ID: 18342911 [TBL] [Abstract][Full Text] [Related]
2. Effects of acacia (Acacia auriculaeformis A. Cunn)-associated fungi on mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) growth in Cd- and Ni-contaminated soils. Jiang M; Cao L; Zhang R Lett Appl Microbiol; 2008 Dec; 47(6):561-5. PubMed ID: 19120926 [TBL] [Abstract][Full Text] [Related]
3. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability. Gupta AK; Sinha S J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138 [TBL] [Abstract][Full Text] [Related]
4. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Zaidi S; Usmani S; Singh BR; Musarrat J Chemosphere; 2006 Aug; 64(6):991-7. PubMed ID: 16487570 [TBL] [Abstract][Full Text] [Related]
5. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Wang B; Liu L; Gao Y; Chen J Chemosphere; 2009 Mar; 74(10):1400-3. PubMed ID: 19108867 [TBL] [Abstract][Full Text] [Related]
6. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Ma Y; Rajkumar M; Freitas H J Hazard Mater; 2009 Jul; 166(2-3):1154-61. PubMed ID: 19147283 [TBL] [Abstract][Full Text] [Related]
7. Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Quartacci MF; Baker AJ; Navari-Izzo F Chemosphere; 2005 Jun; 59(9):1249-55. PubMed ID: 15857636 [TBL] [Abstract][Full Text] [Related]
8. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium. Wong JW; Wong WW; Wei Z; Jagadeesan H Sci Total Environ; 2004 May; 324(1-3):235-46. PubMed ID: 15081709 [TBL] [Abstract][Full Text] [Related]
9. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Jeong S; Moon HS; Nam K; Kim JY; Kim TS Chemosphere; 2012 Jun; 88(2):204-10. PubMed ID: 22472099 [TBL] [Abstract][Full Text] [Related]
10. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Gupta AK; Sinha S J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
12. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Pedron F; Petruzzelli G; Barbafieri M; Tassi E Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Rajkumar M; Ma Y; Freitas H J Environ Manage; 2013 Oct; 128():973-80. PubMed ID: 23895909 [TBL] [Abstract][Full Text] [Related]
14. Inoculation of endophytic bacteria on host and non-host plants--effects on plant growth and Ni uptake. Ma Y; Rajkumar M; Luo Y; Freitas H J Hazard Mater; 2011 Nov; 195():230-7. PubMed ID: 21872991 [TBL] [Abstract][Full Text] [Related]
15. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
16. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Ndeddy Aka RJ; Babalola OO Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Ma Y; Rajkumar M; Freitas H Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Gurajala HK; Cao X; Tang L; Ramesh TM; Lu M; Yang X Environ Pollut; 2019 Nov; 254(Pt B):113085. PubMed ID: 31494406 [TBL] [Abstract][Full Text] [Related]
20. Synergistic impact of two autochthonous saprobic fungi ( Nazir A; Sarfraz W; Allah D; Khalid N; Farid M; Shafiq M; Bareen FE; Rizvi ZF; Naeem N Int J Phytoremediation; 2023; 25(11):1488-1500. PubMed ID: 36633455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]