These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1047 related articles for article (PubMed ID: 18343021)
1. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
2. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz. Rajagopal S; Sadhoo N; Zeqiri B Ultrasound Med Biol; 2015 Jan; 41(1):317-33. PubMed ID: 25220268 [TBL] [Abstract][Full Text] [Related]
3. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of tissue mimicking quality of tofu for biomedical ultrasound. Kim YT; Kim HC; Inada-Kim M; Jung SS; Yun YH; Jho MJ; Sandstrom K Ultrasound Med Biol; 2009 Mar; 35(3):472-81. PubMed ID: 19101073 [TBL] [Abstract][Full Text] [Related]
5. Novel tissue mimicking materials for high frequency breast ultrasound phantoms. Cannon LM; Fagan AJ; Browne JE Ultrasound Med Biol; 2011 Jan; 37(1):122-35. PubMed ID: 21084158 [TBL] [Abstract][Full Text] [Related]
6. Estimating myocardial attenuation from M-mode ultrasonic backscatter. Baldwin SL; Marutyan KR; Yang M; Wallace KD; Holland MR; Miller JG Ultrasound Med Biol; 2005 Apr; 31(4):477-84. PubMed ID: 15831326 [TBL] [Abstract][Full Text] [Related]
7. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles. Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439 [TBL] [Abstract][Full Text] [Related]
8. Broadband Acoustic Measurement of an Agar-Based Tissue-Mimicking-Material: A Longitudinal Study. Rabell Montiel A; Browne JE; Pye SD; Anderson TA; Moran CM Ultrasound Med Biol; 2017 Jul; 43(7):1494-1505. PubMed ID: 28450032 [TBL] [Abstract][Full Text] [Related]
9. Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz. Brewin MP; Srodon PD; Greenwald SE; Birch MJ Ultrasonics; 2014 Feb; 54(2):428-41. PubMed ID: 23683797 [TBL] [Abstract][Full Text] [Related]
10. The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications. Sun C; Pye SD; Browne JE; Janeczko A; Ellis B; Butler MB; Sboros V; Thomson AJ; Brewin MP; Earnshaw CH; Moran CM Ultrasound Med Biol; 2012 Jul; 38(7):1262-70. PubMed ID: 22502881 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic radio-frequency spectrum analysis of normal brain tissue. Strowitzki M; Brand S; Jenderka KV Ultrasound Med Biol; 2007 Apr; 33(4):522-9. PubMed ID: 17316962 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications. Drakos T; Giannakou M; Menikou G; Constantinides G; Damianou C Ultrasonics; 2021 May; 113():106357. PubMed ID: 33548756 [TBL] [Abstract][Full Text] [Related]
13. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating. Killingback AL; Newey VR; El-Brawany MA; Nassiri DK Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269 [TBL] [Abstract][Full Text] [Related]
14. An exposimetry system using tissue-mimicking liquid. Stiles TA; Madsen EL; Frank GR Ultrasound Med Biol; 2008 Jan; 34(1):123-36. PubMed ID: 17720296 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter. Crescenti RA; Bamber JC; Partridge M; Bush NL; Webb S Phys Med Biol; 2007 Nov; 52(22):6747-59. PubMed ID: 17975295 [TBL] [Abstract][Full Text] [Related]
16. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound. Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665 [TBL] [Abstract][Full Text] [Related]
17. Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (part I). Grishenkov D; Pecorari C; Brismar TB; Paradossi G Ultrasound Med Biol; 2009 Jul; 35(7):1127-38. PubMed ID: 19427099 [TBL] [Abstract][Full Text] [Related]
18. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers. Bazán I; Vazquez M; Ramos A; Vera A; Leija L Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591 [TBL] [Abstract][Full Text] [Related]
19. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?]. Abramowicz JS; Kremkau FW; Merz E Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164 [TBL] [Abstract][Full Text] [Related]
20. A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release. Mylonopoulou E; Bazán-Peregrino M; Arvanitis CD; Coussios CC Int J Hyperthermia; 2013; 29(2):133-44. PubMed ID: 23406389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]