These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 18343152)
1. Targeting AMPK: a new therapeutic opportunity in breast cancer. Hadad SM; Fleming S; Thompson AM Crit Rev Oncol Hematol; 2008 Jul; 67(1):1-7. PubMed ID: 18343152 [TBL] [Abstract][Full Text] [Related]
2. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Dowling RJ; Zakikhani M; Fantus IG; Pollak M; Sonenberg N Cancer Res; 2007 Nov; 67(22):10804-12. PubMed ID: 18006825 [TBL] [Abstract][Full Text] [Related]
3. Is it the time for metformin to take place in adjuvant treatment of Her-2 positive breast cancer? Teaching new tricks to old dogs. Yurekli BS; Karaca B; Cetinkalp S; Uslu R Med Hypotheses; 2009 Oct; 73(4):606-7. PubMed ID: 19560877 [TBL] [Abstract][Full Text] [Related]
4. Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Huang NL; Chiang SH; Hsueh CH; Liang YJ; Chen YJ; Lai LP Int J Cardiol; 2009 May; 134(2):169-75. PubMed ID: 18597869 [TBL] [Abstract][Full Text] [Related]
5. Interaction between the AMP-activated protein kinase and mTOR signaling pathways. Kimball SR Med Sci Sports Exerc; 2006 Nov; 38(11):1958-64. PubMed ID: 17095930 [TBL] [Abstract][Full Text] [Related]
6. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Serra V; Markman B; Scaltriti M; Eichhorn PJ; Valero V; Guzman M; Botero ML; Llonch E; Atzori F; Di Cosimo S; Maira M; Garcia-Echeverria C; Parra JL; Arribas J; Baselga J Cancer Res; 2008 Oct; 68(19):8022-30. PubMed ID: 18829560 [TBL] [Abstract][Full Text] [Related]
7. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Hadad S; Iwamoto T; Jordan L; Purdie C; Bray S; Baker L; Jellema G; Deharo S; Hardie DG; Pusztai L; Moulder-Thompson S; Dewar JA; Thompson AM Breast Cancer Res Treat; 2011 Aug; 128(3):783-94. PubMed ID: 21655990 [TBL] [Abstract][Full Text] [Related]
8. Regulation of glucose-6-phosphatase gene expression by insulin and metformin. Mues C; Zhou J; Manolopoulos KN; Korsten P; Schmoll D; Klotz LO; Bornstein SR; Klein HH; Barthel A Horm Metab Res; 2009 Oct; 41(10):730-5. PubMed ID: 19579180 [TBL] [Abstract][Full Text] [Related]
9. Down-regulation of phosphatidylinositol 3'-kinase/AKT/molecular target of rapamycin metabolic pathway by primary letrozole-based therapy in human breast cancer. Generali D; Fox SB; Brizzi MP; Allevi G; Bonardi S; Aguggini S; Milani M; Bersiga A; Campo L; Dionisio R; Vergoni F; Giardini R; Dogliotti L; Bottini A; Harris AL; Berruti A Clin Cancer Res; 2008 May; 14(9):2673-80. PubMed ID: 18451231 [TBL] [Abstract][Full Text] [Related]
10. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Chiang PC; Lin SC; Pan SL; Kuo CH; Tsai IL; Kuo MT; Wen WC; Chen P; Guh JH Biochem Pharmacol; 2010 Jan; 79(2):162-71. PubMed ID: 19723512 [TBL] [Abstract][Full Text] [Related]
11. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Hadad SM; Appleyard V; Thompson AM Breast Cancer Res Treat; 2009 Mar; 114(2):391. PubMed ID: 18421577 [No Abstract] [Full Text] [Related]
13. Akt activation protects pancreatic beta cells from AMPK-mediated death through stimulation of mTOR. Cai Y; Wang Q; Ling Z; Pipeleers D; McDermott P; Pende M; Heimberg H; Van de Casteele M Biochem Pharmacol; 2008 May; 75(10):1981-93. PubMed ID: 18377870 [TBL] [Abstract][Full Text] [Related]
14. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Solskov L; Løfgren B; Kristiansen SB; Jessen N; Pold R; Nielsen TT; Bøtker HE; Schmitz O; Lund S Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):82-7. PubMed ID: 18484962 [TBL] [Abstract][Full Text] [Related]
15. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Murase T; Misawa K; Haramizu S; Hase T Biochem Pharmacol; 2009 Jul; 78(1):78-84. PubMed ID: 19447226 [TBL] [Abstract][Full Text] [Related]
16. LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin. Memmott RM; Dennis PA J Clin Oncol; 2009 Dec; 27(34):e226; author reply e227. PubMed ID: 19858366 [No Abstract] [Full Text] [Related]
17. Metformin promotes induction of lipoprotein lipase in skeletal muscle through activation of adenosine monophosphate-activated protein kinase. Ohira M; Miyashita Y; Murano T; Watanabe F; Shirai K Metabolism; 2009 Oct; 58(10):1408-14. PubMed ID: 19570550 [TBL] [Abstract][Full Text] [Related]
18. PI3K and mTOR inhibitors: a new generation of targeted anticancer agents. Brachmann S; Fritsch C; Maira SM; García-Echeverría C Curr Opin Cell Biol; 2009 Apr; 21(2):194-8. PubMed ID: 19201591 [TBL] [Abstract][Full Text] [Related]
19. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Shor B; Zhang WG; Toral-Barza L; Lucas J; Abraham RT; Gibbons JJ; Yu K Cancer Res; 2008 Apr; 68(8):2934-43. PubMed ID: 18413763 [TBL] [Abstract][Full Text] [Related]
20. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Yap TA; Garrett MD; Walton MI; Raynaud F; de Bono JS; Workman P Curr Opin Pharmacol; 2008 Aug; 8(4):393-412. PubMed ID: 18721898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]