BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 18343395)

  • 41. Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films.
    Warnken KW; Zhang H; Davison W
    Anal Chem; 2005 Sep; 77(17):5440-6. PubMed ID: 16131050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of biofilm by Staphylococcus xylosus.
    Planchon S; Gaillard-Martinie B; Dordet-Frisoni E; Bellon-Fontaine MN; Leroy S; Labadie J; Hébraud M; Talon R
    Int J Food Microbiol; 2006 May; 109(1-2):88-96. PubMed ID: 16503066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques.
    Ubbink J; Schär-Zammaretti P
    Micron; 2005; 36(4):293-320. PubMed ID: 15857770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor.
    Möhle RB; Langemann T; Haesner M; Augustin W; Scholl S; Neu TR; Hempel DC; Horn H
    Biotechnol Bioeng; 2007 Nov; 98(4):747-55. PubMed ID: 17421046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity.
    Das T; Sharma PK; Krom BP; van der Mei HC; Busscher HJ
    Langmuir; 2011 Aug; 27(16):10113-8. PubMed ID: 21740034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial attachment to iron-impregnated granular activated carbon.
    Kim HC; Park SJ; Lee CG; Kim SB; Kim KW
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):196-201. PubMed ID: 19660921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films.
    Pidhatika B; Möller J; Benetti EM; Konradi R; Rakhmatullina E; Mühlebach A; Zimmermann R; Werner C; Vogel V; Textor M
    Biomaterials; 2010 Dec; 31(36):9462-72. PubMed ID: 21059465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of substrates on biofilm formation observed by atomic force microscopy.
    Oh YJ; Lee NR; Jo W; Jung WK; Lim JS
    Ultramicroscopy; 2009 Jul; 109(8):874-80. PubMed ID: 19394143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens.
    Song B; Leff LG
    Microbiol Res; 2006; 161(4):355-61. PubMed ID: 16517137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.
    Chen G; Beving DE; Bedi RS; Yan YS; Walker SL
    Langmuir; 2009 Feb; 25(3):1620-6. PubMed ID: 19123799
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins.
    Liu Y; Strauss J; Camesano TA
    Biomaterials; 2008 Nov; 29(33):4374-82. PubMed ID: 18760835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complementary effects of nanosilver and superhydrophobic coatings on the prevention of marine bacterial adhesion.
    Liu T; Yin B; He T; Guo N; Dong L; Yin Y
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4683-90. PubMed ID: 22939431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria.
    Adout A; Kang S; Asatekin A; Mayes AM; Elimelech M
    Environ Sci Technol; 2010 Apr; 44(7):2406-11. PubMed ID: 20192174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces.
    Salerno MB; Logan BE; Velegol D
    Langmuir; 2004 Nov; 20(24):10625-9. PubMed ID: 15544394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria.
    Bautista-Toledo MI; Méndez-Díaz JD; Sánchez-Polo M; Rivera-Utrilla J; Ferro-García MA
    J Colloid Interface Sci; 2008 Jan; 317(1):11-7. PubMed ID: 17936293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Desulfovibrio fairfieldensis adhesion on implantable titanium used in odontology: a preliminary study.
    Tchinda A; Pierson G; Chezeau L; Kouitat-Njiwa R; Rihn BH; Bravetti P
    Cell Mol Biol (Noisy-le-grand); 2021 Sep; 67(2):56-65. PubMed ID: 34817338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of the electrostatic force in spore adhesion.
    Chung E; Yiacoumi S; Lee I; Tsouris C
    Environ Sci Technol; 2010 Aug; 44(16):6209-14. PubMed ID: 20666490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of surface sub-micropattern on the adhesion of pioneer bacteria on metals.
    Díaz C; Schilardi P; de Mele MF
    Artif Organs; 2008 Apr; 32(4):292-8. PubMed ID: 18370943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.