These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18343521)

  • 1. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery.
    Jin KM; Kim YH
    J Control Release; 2008 May; 127(3):249-56. PubMed ID: 18343521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant human gelatin nanoparticles as a protein drug carrier.
    Won YW; Kim YH
    J Control Release; 2008 Apr; 127(2):154-61. PubMed ID: 18329122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier.
    Hyun H; Kim YH; Song IB; Lee JW; Kim MS; Khang G; Park K; Lee HB
    Biomacromolecules; 2007 Apr; 8(4):1093-100. PubMed ID: 17326678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix.
    Tiwari A; Bindal S; Bohidar HB
    Biomacromolecules; 2009 Jan; 10(1):184-9. PubMed ID: 19072040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo release of bovine serum albumin from an injectable small intestinal submucosa gel.
    Kang KN; Kim DY; Yoon SM; Kwon JS; Seo HW; Kim ES; Lee B; Kim JH; Min BH; Lee HB; Kim MS
    Int J Pharm; 2011 Nov; 420(2):266-73. PubMed ID: 21907777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel.
    Gou M; Li X; Dai M; Gong C; Wang X; Xie Y; Deng H; Chen L; Zhao X; Qian Z; Wei Y
    Int J Pharm; 2008 Jul; 359(1-2):228-33. PubMed ID: 18448286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering.
    Sakai S; Hirose K; Taguchi K; Ogushi Y; Kawakami K
    Biomaterials; 2009 Jul; 30(20):3371-7. PubMed ID: 19345991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels.
    Bhowmik M; Bain MK; Ghosh LK; Chattopadhyay D
    Pharm Dev Technol; 2011 Aug; 16(4):385-91. PubMed ID: 20429816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocrosslinked anhydride systems for long-term protein release.
    Weiner AA; Bock EA; Gipson ME; Shastri VP
    Biomaterials; 2008 May; 29(15):2400-7. PubMed ID: 18299148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable extracellular matrix hydrogel developed using porcine articular cartilage.
    Kwon JS; Yoon SM; Shim SW; Park JH; Min KJ; Oh HJ; Kim JH; Kim YJ; Yoon JJ; Choi BH; Kim MS
    Int J Pharm; 2013 Sep; 454(1):183-91. PubMed ID: 23834831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint.
    Brown KE; Leong K; Huang CH; Dalal R; Green GD; Haimes HB; Jimenez PA; Bathon J
    Arthritis Rheum; 1998 Dec; 41(12):2185-95. PubMed ID: 9870875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.
    Gupta D; Tator CH; Shoichet MS
    Biomaterials; 2006 Apr; 27(11):2370-9. PubMed ID: 16325904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained-release of protein from biodegradable sericin film, gel and sponge.
    Nishida A; Yamada M; Kanazawa T; Takashima Y; Ouchi K; Okada H
    Int J Pharm; 2011 Apr; 407(1-2):44-52. PubMed ID: 21238562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient weapon for protracted warfare to malaria: A chondroitin sulfate derivates-containing injectable, ultra-long-lasting meshy-gel system.
    Luo J; Zhang P; Liu R; Li X; Hua P; Li S; Zhang T; Zhang T; Fu Y; Song X; Gong T; Zhang Z
    Carbohydr Polym; 2019 Jun; 214():131-141. PubMed ID: 30925981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of External Stimulus-Free Gelatin-Catechol Hydrogels with Injectability and Tunable Temperature Responsiveness.
    Wu J; Shin H; Lee J; Kim S; Lee H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):236-244. PubMed ID: 34935360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase.
    Wang H; Boerman OC; Sariibrahimoglu K; Li Y; Jansen JA; Leeuwenburgh SC
    Biomaterials; 2012 Nov; 33(33):8695-703. PubMed ID: 22922022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ forming parenteral drug delivery systems: an overview.
    Packhaeuser CB; Schnieders J; Oster CG; Kissel T
    Eur J Pharm Biopharm; 2004 Sep; 58(2):445-55. PubMed ID: 15296966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential application of Metolose in a thermoresponsive transdermal therapeutic system.
    Csóka G; Gelencsér A; Makó A; Marton S; Zelkó R; Klebovich I; Antal I
    Int J Pharm; 2007 Jun; 338(1-2):15-20. PubMed ID: 17331682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chitosan on the release of protein from thermosensitive poly(organophosphazene) hydrogels.
    Kang GD; Song SC
    Int J Pharm; 2008 Feb; 349(1-2):188-95. PubMed ID: 17884313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.