BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18343630)

  • 1. The use of fluorescence for detecting MeHg-induced ROS in cell cultures.
    Kaur P; Schulz K; Heggland I; Aschner M; Syversen T
    Toxicol In Vitro; 2008 Aug; 22(5):1392-8. PubMed ID: 18343630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity.
    Kaur P; Evje L; Aschner M; Syversen T
    Toxicol In Vitro; 2009 Apr; 23(3):378-85. PubMed ID: 19168124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P; Aschner M; Syversen T
    Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro effects of Trolox on methylmercury-induced neurotoxicity.
    Kaur P; Evje L; Aschner M; Syversen T
    Toxicology; 2010 Sep; 276(1):73-8. PubMed ID: 20637824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium.
    Mundy WR; Freudenrich TM
    Neurotoxicology; 2000 Dec; 21(6):1135-44. PubMed ID: 11233760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.
    Kaur P; Schulz K; Aschner M; Syversen T
    Toxicol Sci; 2007 Dec; 100(2):423-32. PubMed ID: 17728287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells.
    Hare MF; McGinnis KM; Atchison WD
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1626-35. PubMed ID: 8371160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity.
    Ali SF; LeBel CP; Bondy SC
    Neurotoxicology; 1992; 13(3):637-48. PubMed ID: 1475065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices.
    Wagner C; Vargas AP; Roos DH; Morel AF; Farina M; Nogueira CW; Aschner M; Rocha JB
    Arch Toxicol; 2010 Feb; 84(2):89-97. PubMed ID: 19902180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells.
    Limke TL; Atchison WD
    Toxicol Appl Pharmacol; 2002 Jan; 178(1):52-61. PubMed ID: 11781080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.
    Kaur P; Aschner M; Syversen T
    Neurotoxicology; 2006 Jul; 27(4):492-500. PubMed ID: 16513172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures.
    Kaur P; Heggland I; Aschner M; Syversen T
    Neurotoxicology; 2008 Nov; 29(6):978-87. PubMed ID: 18619488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system.
    Roos DH; Puntel RL; Santos MM; Souza DO; Farina M; Nogueira CW; Aschner M; Burger ME; Barbosa NB; Rocha JB
    Toxicol In Vitro; 2009 Mar; 23(2):302-7. PubMed ID: 19162164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
    Bellum S; Bawa B; Thuett KA; Stoica G; Abbott LC
    Int J Toxicol; 2007; 26(3):261-9. PubMed ID: 17564908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early acute necrosis and delayed apoptosis induced by methyl mercury in murine peritoneal neutrophils.
    Kuo TC; Lin-Shiau SY
    Basic Clin Pharmacol Toxicol; 2004 Jun; 94(6):274-81. PubMed ID: 15228499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells.
    Heggland I; Kaur P; Syversen T
    Toxicol In Vitro; 2009 Sep; 23(6):1020-7. PubMed ID: 19540910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early anesthetic preconditioning in mixed cortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role of adenosine triphosphate dependent potassium channels and reactive oxygen species in sevoflurane-induced neuroprotection.
    Velly LJ; Canas PT; Guillet BA; Labrande CN; Masmejean FM; Nieoullon AL; Gouin FM; Bruder NJ; Pisano PS
    Anesth Analg; 2009 Mar; 108(3):955-63. PubMed ID: 19224809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for interactions between intracellular calcium stores during methylmercury-induced intracellular calcium dysregulation in rat cerebellar granule neurons.
    Limke TL; Otero-MontaƱez JK; Atchison WD
    J Pharmacol Exp Ther; 2003 Mar; 304(3):949-58. PubMed ID: 12604669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2007 Dec; 242(1-3):130-43. PubMed ID: 17980949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.