BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18343630)

  • 21. Methylmercury induces activation of Notch signaling.
    Bland C; Rand MD
    Neurotoxicology; 2006 Dec; 27(6):982-91. PubMed ID: 16757030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury.
    Ou YC; Thompson SA; Kirchner SC; Kavanagh TJ; Faustman EM
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):31-8. PubMed ID: 9356304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity.
    Shichiri M; Takanezawa Y; Uchida K; Tamai H; Arai H
    Brain Res; 2007 Nov; 1182():106-15. PubMed ID: 17949699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methylmercury causes glial IL-6 release.
    Chang JY
    Neurosci Lett; 2007 Apr; 416(3):217-20. PubMed ID: 17368937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delta 12, 14-prostaglandin J2.
    Garg TK; Chang JY
    J Neuroimmunol; 2006 Feb; 171(1-2):17-28. PubMed ID: 16225932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices.
    Yuan Y; Atchison WD
    Mol Pharmacol; 2007 Apr; 71(4):1109-21. PubMed ID: 17244699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro.
    Ponce RA; Kavanagh TJ; Mottet NK; Whittaker SG; Faustman EM
    Toxicol Appl Pharmacol; 1994 Jul; 127(1):83-90. PubMed ID: 8048057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The consequences of methylmercury exposure on interactive functions between astrocytes and neurons.
    Allen JW; Shanker G; Tan KH; Aschner M
    Neurotoxicology; 2002 Dec; 23(6):755-9. PubMed ID: 12520765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons.
    Graff RD; Falconer MM; Brown DL; Reuhl KR
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):215-24. PubMed ID: 9194405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protection of pyrroloquinoline quinone against methylmercury-induced neurotoxicity via reducing oxidative stress.
    Zhang P; Xu Y; Sun J; Li X; Wang L; Jin L
    Free Radic Res; 2009 Mar; 43(3):224-33. PubMed ID: 19191107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.
    Roda E; Coccini T; Acerbi D; Castoldi A; Bernocchi G; Manzo L
    J Chem Neuroanat; 2008 May; 35(3):285-94. PubMed ID: 18358697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2009 Mar; 257(3):117-26. PubMed ID: 19150642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of demethylation of methylmercury in cultured astrocytes.
    Shapiro AM; Chan HM
    Chemosphere; 2008 Dec; 74(1):112-8. PubMed ID: 18950830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of methylmercury on mitochondrial function and reactive oxygen species formation in rat striatal synaptosomes are age-dependent.
    Dreiem A; Gertz CC; Seegal RF
    Toxicol Sci; 2005 Sep; 87(1):156-62. PubMed ID: 15958658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro toxicity induced by methylmercury on sympathetic neurons is reverted by L-cysteine or glutathione.
    de Melo Reis RA; Herculano AM; da Silva MC; dos Santos RM; do Nascimento JL
    Neurosci Res; 2007 Jul; 58(3):278-84. PubMed ID: 17482303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell death mechanisms in AtT20 pituitary cells exposed to polychlorinated biphenyls (PCB 126 and PCB 153) and methylmercury.
    Johansson C; Tofighi R; Tamm C; Goldoni M; Mutti A; Ceccatelli S
    Toxicol Lett; 2006 Dec; 167(3):183-90. PubMed ID: 17049763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+.
    Moretto MB; Funchal C; Santos AQ; Gottfried C; Boff B; Zeni G; Pureur RP; Souza DO; Wofchuk S; Rocha JB
    Toxicology; 2005 Oct; 214(1-2):57-66. PubMed ID: 16011868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of white blood cell phagocytosis as an immunological indicator of methylmercury exposure in birds.
    Holloway J; Scheuhammer AM; Chan HM
    Arch Environ Contam Toxicol; 2003 May; 44(4):493-501. PubMed ID: 12712280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methylmercury increases N-methyl-D-aspartate receptors on human SH-SY 5Y neuroblastoma cells leading to neurotoxicity.
    Ndountse LT; Chan HM
    Toxicology; 2008 Jul; 249(2-3):251-5. PubMed ID: 18597911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutathione-mediated neuroprotection against methylmercury neurotoxicity in cortical culture is dependent on MRP1.
    Rush T; Liu X; Nowakowski AB; Petering DH; Lobner D
    Neurotoxicology; 2012 Jun; 33(3):476-81. PubMed ID: 22464990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.