BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18343656)

  • 21. Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin.
    Chen T; Wu J; Zhang J; Wu J; Sun L
    Bioresour Technol; 2014 Feb; 153():223-9. PubMed ID: 24365743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of scrap tyre pyrolysis under vacuum conditions.
    Lopez G; Aguado R; Olazar M; Arabiourrutia M; Bilbao J
    Waste Manag; 2009 Oct; 29(10):2649-55. PubMed ID: 19589669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model.
    Yan JH; Zhu HM; Jiang XG; Chi Y; Cen KF
    J Hazard Mater; 2009 Mar; 162(2-3):646-51. PubMed ID: 18579296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow-pyrolysis and -oxidation of different biomass fuel samples.
    Haykiri-Acma H; Yaman S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1909-20. PubMed ID: 16849135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of acid-catalysed organosolv fractionation of wheat straw.
    Sidiras D; Koukios E
    Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolysis characteristics and kinetics of chicken litter.
    Kim SS; Agblevor FA
    Waste Manag; 2007; 27(1):135-40. PubMed ID: 16540303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.
    Chevanan N; Womac AR; Bitra VS; Igathinathane C; Yang YT; Miu PI; Sokhansanj S
    Bioresour Technol; 2010 Jan; 101(1):207-14. PubMed ID: 19699634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method for evaluating the sewage sludge pyrolysis kinetics.
    Ji A; Zhang S; Lu X; Liu Y
    Waste Manag; 2010 Jul; 30(7):1225-9. PubMed ID: 19897350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics modeling of dynamic pyrolysis of bagasse fibers.
    Sun L; Chen JY; Negulescu II; Moore MA; Collier BJ
    Bioresour Technol; 2011 Jan; 102(2):1951-8. PubMed ID: 20855203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil.
    Liu S; Chen M; Hu Q; Wang J; Kong L
    Bioresour Technol; 2013 Feb; 129():381-6. PubMed ID: 23262015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of thermal decomposition of some biomasses in an inert environment. An investigation of the effect of lead loaded by biosorption.
    Martín-Lara MÁ; Iáñez-Rodríguez I; Blázquez G; Quesada L; Pérez A; Calero M
    Waste Manag; 2017 Dec; 70():101-113. PubMed ID: 28951148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA).
    Damartzis T; Vamvuka D; Sfakiotakis S; Zabaniotou A
    Bioresour Technol; 2011 May; 102(10):6230-8. PubMed ID: 21398116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.
    Shen J; Igathinathane C; Yu M; Pothula AK
    Bioresour Technol; 2015 Jun; 185():89-98. PubMed ID: 25756207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolysis and gasification of typical components in wastes with macro-TGA.
    Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q
    Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.