These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18343656)

  • 41. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.
    Bitra VS; Womac AR; Igathinathane C; Miu PI; Yang YT; Smith DR; Chevanan N; Sokhansanj S
    Bioresour Technol; 2009 Dec; 100(24):6578-85. PubMed ID: 19683916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor.
    Ngo TA; Kim J; Kim SS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S104-8. PubMed ID: 19592241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-isothermal thermogravimetric analysis of oil-palm solid wastes.
    Luangkiattikhun P; Tangsathitkulchai C; Tangsathitkulchai M
    Bioresour Technol; 2008 Mar; 99(5):986-97. PubMed ID: 17451942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Straw bio-degradation by acidogenic bacteria and composite fungi.
    Zhang KQ; Chen XW; Ji M; Ning AR; Fan H; Zhou K
    J Environ Sci (China); 2004; 16(4):690-3. PubMed ID: 15495983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.
    Shah A; Darr MJ; Dalluge D; Medic D; Webster K; Brown RC
    Bioresour Technol; 2012 Dec; 125():348-52. PubMed ID: 23069609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.
    Islam MR; Haniu H; Fardoushi J
    Waste Manag; 2009 Feb; 29(2):668-77. PubMed ID: 18585909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis.
    Agrawal A; Chakraborty S
    Bioresour Technol; 2013 Jan; 128():72-80. PubMed ID: 23196224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions.
    Gai C; Dong Y; Zhang T
    Bioresour Technol; 2013 Jan; 127():298-305. PubMed ID: 23138056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Kinetics of enzymatic hydrolysis of steam-explosion pretreated corn straw].
    Ren S; Cheng K; Song A; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):592-7. PubMed ID: 21847994
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor.
    Sun S; Tian H; Zhao Y; Sun R; Zhou H
    Bioresour Technol; 2010 May; 101(10):3678-84. PubMed ID: 20074938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Products and bioenergy from the pyrolysis of rice straw via radio frequency plasma and its kinetics.
    Tu WK; Shie JL; Chang CY; Chang CF; Lin CF; Yang SY; Kuo JT; Shaw DG; You YD; Lee DJ
    Bioresour Technol; 2009 Mar; 100(6):2052-61. PubMed ID: 19046633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influencing mechanism of zinc mineral contamination on pyrolysis kinetic and product characteristics of corn biomass.
    Li C; Ji G; Qu Y; Irfan M; Zhu K; Wang X; Li A
    J Environ Manage; 2021 Mar; 281():111837. PubMed ID: 33418387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water.
    Zhuang X; Yuan Z; Ma L; Wu C; Xu M; Xu J; Zhu S; Qi W
    Biotechnol Adv; 2009; 27(5):578-82. PubMed ID: 19397989
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis.
    Qiao Y; Wang B; Ji Y; Xu F; Zong P; Zhang J; Tian Y
    Bioresour Technol; 2019 Apr; 278():287-295. PubMed ID: 30708332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermogravimetric kinetics of sugarcane bagasse pretreated by hot-water.
    Wang Q; Liu S; Yang G; Chen J
    Bioresour Technol; 2013 Feb; 129():676-9. PubMed ID: 23312438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres.
    Munir S; Daood SS; Nimmo W; Cunliffe AM; Gibbs BM
    Bioresour Technol; 2009 Feb; 100(3):1413-8. PubMed ID: 18829303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis.
    Ceylan S; Topcu Y; Ceylan Z
    Bioresour Technol; 2014 Nov; 171():193-8. PubMed ID: 25194914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.