These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18343712)

  • 1. Identifying and exploiting grain yield genes in rice.
    Sakamoto T; Matsuoka M
    Curr Opin Plant Biol; 2008 Apr; 11(2):209-14. PubMed ID: 18343712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion in a gene associated with grain size increased yields during rice domestication.
    Shomura A; Izawa T; Ebana K; Ebitani T; Kanegae H; Konishi S; Yano M
    Nat Genet; 2008 Aug; 40(8):1023-8. PubMed ID: 18604208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.).
    Yang G; Xing Y; Li S; Ding J; Yue B; Deng K; Li Y; Zhu Y
    Hereditas; 2006 Dec; 143(2006):236-45. PubMed ID: 17362360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Over-expression of the rice LRK1 gene improves quantitative yield components.
    Zha X; Luo X; Qian X; He G; Yang M; Li Y; Yang J
    Plant Biotechnol J; 2009 Sep; 7(7):611-20. PubMed ID: 19619185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.
    Weng J; Gu S; Wan X; Gao H; Guo T; Su N; Lei C; Zhang X; Cheng Z; Guo X; Wang J; Jiang L; Zhai H; Wan J
    Cell Res; 2008 Dec; 18(12):1199-209. PubMed ID: 19015668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of agricultural traits in rice related to phosphorus efficiency.
    Guo ZH; Ding P; He LY; Xu CG
    Yi Chuan Xue Bao; 2006 Jul; 33(7):634-41. PubMed ID: 16875321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic bases of rice grain shape: so many genes, so little known.
    Huang R; Jiang L; Zheng J; Wang T; Wang H; Huang Y; Hong Z
    Trends Plant Sci; 2013 Apr; 18(4):218-26. PubMed ID: 23218902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetic dissection of quantitative trait loci regulating rice grain size.
    Zuo J; Li J
    Annu Rev Genet; 2014; 48():99-118. PubMed ID: 25149369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Possibility of grain breeding using rice genome research].
    Hattori Y; Ashikari M
    Tanpakushitsu Kakusan Koso; 2008 Nov; 53(14):1881-8. PubMed ID: 19044025
    [No Abstract]   [Full Text] [Related]  

  • 10. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield.
    Li D; Wang L; Wang M; Xu YY; Luo W; Liu YJ; Xu ZH; Li J; Chong K
    Plant Biotechnol J; 2009 Oct; 7(8):791-806. PubMed ID: 19754838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updates and perspectives on the utilization of molecular makers of complex traits in rice.
    Li G; Kwon SW; Park YJ
    Genet Mol Res; 2012 Dec; 11(4):4157-68. PubMed ID: 23079968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Not just a grain of rice: the quest for quality.
    Fitzgerald MA; McCouch SR; Hall RD
    Trends Plant Sci; 2009 Mar; 14(3):133-9. PubMed ID: 19230745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.
    Li P; Wang Y; Qian Q; Fu Z; Wang M; Zeng D; Li B; Wang X; Li J
    Cell Res; 2007 May; 17(5):402-10. PubMed ID: 17468779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-based modelling for rice: an opportunity to enhance the simulation of rice growth and development?
    Bannayan M; Kobayashi K; Marashi H; Hoogenboom G
    J Theor Biol; 2007 Dec; 249(3):593-605. PubMed ID: 17915256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.
    Xue W; Xing Y; Weng X; Zhao Y; Tang W; Wang L; Zhou H; Yu S; Xu C; Li X; Zhang Q
    Nat Genet; 2008 Jun; 40(6):761-7. PubMed ID: 18454147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genes offering the potential for designing yield-related traits in rice.
    Ikeda M; Miura K; Aya K; Kitano H; Matsuoka M
    Curr Opin Plant Biol; 2013 May; 16(2):213-20. PubMed ID: 23466256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines.
    Hao W; Zhu MZ; Gao JP; Sun SY; Lin HX
    J Integr Plant Biol; 2009 May; 51(5):500-12. PubMed ID: 19508361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Back to the future of cereals. Genomic studies of the world's major grain crops, together with a technology called marker-assisted breeding, could yield a new green revolution.
    Goff SA; Salmeron JM
    Sci Am; 2004 Aug; 291(2):42-9. PubMed ID: 15298118
    [No Abstract]   [Full Text] [Related]  

  • 19. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meiotic genes and proteins in cereals.
    Jenkins G; Phillips D; Mikhailova EI; Timofejeva L; Jones RN
    Cytogenet Genome Res; 2008; 120(3-4):291-301. PubMed ID: 18504358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.