BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18344143)

  • 1. TKK Aparat: an environment for voice inverse filtering and parameterization.
    Airas M
    Logoped Phoniatr Vocol; 2008; 33(1):49-64. PubMed ID: 18344143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voice onset time versus articulatory modeling for stop consonants.
    Rothenberg M
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):171-80. PubMed ID: 19513923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What do male singers mean by modal and falsetto register? An investigation of the glottal voice source.
    Salomão GL; Sundberg J
    Logoped Phoniatr Vocol; 2009; 34(2):73-83. PubMed ID: 19363740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Assessment of Glottal Dysfunction Through Unified Acoustic Voice Analysis.
    McLoughlin IV; Perrotin O; Sharifzadeh H; Allen J; Song Y
    J Voice; 2022 Nov; 36(6):743-754. PubMed ID: 32980231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing closed quotient in children singers' voices as measured by high-speed-imaging, electroglottography, and inverse filtering.
    Mecke AC; Sundberg J; Granqvist S; Echternach M
    J Acoust Soc Am; 2012 Jan; 131(1):435-41. PubMed ID: 22280605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of microphone type on acoustic measures of voice.
    Parsa V; Jamieson DG; Pretty BR
    J Voice; 2001 Sep; 15(3):331-43. PubMed ID: 11575630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of the external laryngeal microphone in glottis exploration with the application of the acoustic method of mean spectral amplitude].
    González Ortín M; Ramón JL; Sprekelsen C
    An Otorrinolaringol Ibero Am; 1985; 12(6):549-58. PubMed ID: 4096354
    [No Abstract]   [Full Text] [Related]  

  • 14. Determination of glottal excitation cycles in running speech.
    Hess WJ
    Phonetica; 1995; 52(3):196-204. PubMed ID: 7568395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering.
    Alku P; Magi C; Yrttiaho S; Bäckström T; Story B
    J Acoust Soc Am; 2009 May; 125(5):3289-305. PubMed ID: 19425671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the influence of warmup on singing voice quality using acoustic measures.
    Amir O; Amir N; Michaeli O
    J Voice; 2005 Jun; 19(2):252-60. PubMed ID: 15907439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic analysis of trill sounds.
    Dhananjaya N; Yegnanarayana B; Bhaskararao P
    J Acoust Soc Am; 2012 Apr; 131(4):3141-52. PubMed ID: 22501086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient.
    Airas M; Alku P
    Phonetica; 2006; 63(1):26-46. PubMed ID: 16514274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.