These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18344227)

  • 21. Unraveling mechanisms of homeostatic synaptic plasticity.
    Pozo K; Goda Y
    Neuron; 2010 May; 66(3):337-51. PubMed ID: 20471348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity.
    Carroll RC; Zukin RS
    Trends Neurosci; 2002 Nov; 25(11):571-7. PubMed ID: 12392932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death.
    Martel MA; Wyllie DJ; Hardingham GE
    Neuroscience; 2009 Jan; 158(1):334-43. PubMed ID: 18378405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robustness of learning that is based on covariance-driven synaptic plasticity.
    Loewenstein Y
    PLoS Comput Biol; 2008 Mar; 4(3):e1000007. PubMed ID: 18369414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Event-driven simulations of a plastic, spiking neural network.
    Chen CC; Jasnow D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031908. PubMed ID: 22060404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid exchange of synaptic and extrasynaptic NMDA receptors in hippocampal CA1 neurons.
    McQuate A; Barria A
    J Neurophysiol; 2020 Mar; 123(3):1004-1014. PubMed ID: 31995440
    [No Abstract]   [Full Text] [Related]  

  • 28. Activity-dependent synapse development: changing the rules.
    Murphy TH
    Nat Neurosci; 2003 Jan; 6(1):9-11. PubMed ID: 12494242
    [No Abstract]   [Full Text] [Related]  

  • 29. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission.
    Kotecha SA; MacDonald JF
    Int Rev Neurobiol; 2003; 54():51-106. PubMed ID: 12785285
    [No Abstract]   [Full Text] [Related]  

  • 31. Error correction and fast detectors implemented by ultrafast neuronal plasticity.
    Vardi R; Marmari H; Kanter I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042712. PubMed ID: 24827283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic plasticity with discrete state synapses.
    Abarbanel HD; Talathi SS; Gibb L; Rabinovich MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031914. PubMed ID: 16241489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current.
    Sobczyk A; Svoboda K
    Neuron; 2007 Jan; 53(1):17-24. PubMed ID: 17196527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.
    Leininger E; Belousov AB
    Brain Res; 2009 Jan; 1251():87-102. PubMed ID: 19059386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Synaptic plasticity and synaptic reorganization regulated by microglia].
    Hayashi Y; Nakanishi H
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2013 Nov; 33(5-6):211-6. PubMed ID: 25069260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distributed synchrony in a cell assembly of spiking neurons.
    Levy N; Horn D; Meilijson I; Ruppin E
    Neural Netw; 2001; 14(6-7):815-24. PubMed ID: 11665773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation.
    Kozlov A; Kotaleski JH; Aurell E; Grillner S; Lansner A
    J Comput Neurosci; 2001; 11(2):183-200. PubMed ID: 11717534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliable neuronal systems: the importance of heterogeneity.
    Lengler J; Jug F; Steger A
    PLoS One; 2013; 8(12):e80694. PubMed ID: 24324621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spike timing and synaptic plasticity in the premotor pathway of birdsong.
    Abarbanel HD; Gibb L; Mindlin GB; Rabinovich MI; Talathi S
    Biol Cybern; 2004 Sep; 91(3):159-67. PubMed ID: 15378372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.