These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 1834481)
1. Metabolic regulation of the trehalose content of vegetative yeast. Winkler K; Kienle I; Burgert M; Wagner JC; Holzer H FEBS Lett; 1991 Oct; 291(2):269-72. PubMed ID: 1834481 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Neves MJ; François J Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):859-64. PubMed ID: 1335235 [TBL] [Abstract][Full Text] [Related]
3. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. Hottiger T; Schmutz P; Wiemken A J Bacteriol; 1987 Dec; 169(12):5518-22. PubMed ID: 2960663 [TBL] [Abstract][Full Text] [Related]
4. Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Iwahashi H; Nwaka S; Obuchi K; Komatsu Y Appl Environ Microbiol; 1998 Nov; 64(11):4614-7. PubMed ID: 9797333 [TBL] [Abstract][Full Text] [Related]
5. Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Ribeiro MJ; Silva JT; Panek AD Biochim Biophys Acta; 1994 Jul; 1200(2):139-47. PubMed ID: 8031833 [TBL] [Abstract][Full Text] [Related]
6. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. Hottiger T; De Virgilio C; Bell W; Boller T; Wiemken A Eur J Biochem; 1992 Nov; 210(1):125-32. PubMed ID: 1446665 [TBL] [Abstract][Full Text] [Related]
7. Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Neves MJ; Hohmann S; Bell W; Dumortier F; Luyten K; Ramos J; Cobbaert P; de Koning W; Kaneva Z; Thevelein JM Curr Genet; 1995 Jan; 27(2):110-22. PubMed ID: 7788713 [TBL] [Abstract][Full Text] [Related]
8. Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Simola M; Hänninen AL; Stranius SM; Makarow M Mol Microbiol; 2000 Jul; 37(1):42-53. PubMed ID: 10931304 [TBL] [Abstract][Full Text] [Related]
9. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. De Virgilio C; Piper P; Boller T; Wiemken A FEBS Lett; 1991 Aug; 288(1-2):86-90. PubMed ID: 1831771 [TBL] [Abstract][Full Text] [Related]
10. Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. De Virgilio C; Simmen U; Hottiger T; Boller T; Wiemken A FEBS Lett; 1990 Oct; 273(1-2):107-10. PubMed ID: 2146164 [TBL] [Abstract][Full Text] [Related]
11. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Fillinger S; Chaveroche MK; van Dijck P; de Vries R; Ruijter G; Thevelein J; d'Enfert C Microbiology (Reading); 2001 Jul; 147(Pt 7):1851-1862. PubMed ID: 11429462 [TBL] [Abstract][Full Text] [Related]
12. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [TBL] [Abstract][Full Text] [Related]
13. Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells. Saleh AA; Gune US; Chaudhary RK; Turakhiya AP; Roy I Biochim Biophys Acta; 2014 Apr; 1843(4):746-57. PubMed ID: 24412307 [TBL] [Abstract][Full Text] [Related]
14. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Eleutherio EC; Araujo PS; Panek AD Cryobiology; 1993 Dec; 30(6):591-6. PubMed ID: 8306706 [TBL] [Abstract][Full Text] [Related]
15. Heat-shock response in a yeast tps1 mutant deficient in trehalose synthesis. Argüelles JC FEBS Lett; 1994 Aug; 350(2-3):266-70. PubMed ID: 8070577 [TBL] [Abstract][Full Text] [Related]
16. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
17. Effects of temperature shifts on the activities of Neurospora crassa glycogen synthase, glycogen phosphorylase and trehalose-6-phosphate synthase. Noventa-Jordão MA; de Lourdes M; Polizeli TM; Bonini BM; Jorge JA; Terenzi HF FEBS Lett; 1996 Jan; 378(1):32-6. PubMed ID: 8549797 [TBL] [Abstract][Full Text] [Related]
18. De novo protein synthesis is essential for thermotolerance acquisition in a Saccharomyces cerevisiae trehalose synthase mutant. Gross C; Watson K Biochem Mol Biol Int; 1998 Jul; 45(4):663-71. PubMed ID: 9713688 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae. Gross C; Watson K Can J Microbiol; 1998 Apr; 44(4):341-50. PubMed ID: 9674106 [TBL] [Abstract][Full Text] [Related]
20. Is thermotolerance of yeast dependent on trehalose accumulation? Nwaka S; Kopp M; Burgert M; Deuchler I; Kienle I; Holzer H FEBS Lett; 1994 May; 344(2-3):225-8. PubMed ID: 8187889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]