BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 18344954)

  • 41. Wide-field fundus autofluorescence imaging of retinitis pigmentosa.
    Oishi A; Ogino K; Makiyama Y; Nakagawa S; Kurimoto M; Yoshimura N
    Ophthalmology; 2013 Sep; 120(9):1827-34. PubMed ID: 23631947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural course of ocular function in pigmented paravenous retinochoroidal atrophy.
    Choi JY; Sandberg MA; Berson EL
    Am J Ophthalmol; 2006 Apr; 141(4):763-5. PubMed ID: 16564825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation of macular function with retinal thickness in nonproliferative type 2 idiopathic macular telangiectasia.
    Charbel Issa P; Helb HM; Holz FG; Scholl HP;
    Am J Ophthalmol; 2008 Jan; 145(1):169-175. PubMed ID: 17981256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundus autofluorescence in a case of occult macular dystrophy.
    Rasquin F; Van Nechel C; Cordonnier M
    Bull Soc Belge Ophtalmol; 2009; (313):9-12. PubMed ID: 20108567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fundus autofluorescence in autosomal dominant occult macular dystrophy.
    Fujinami K; Tsunoda K; Hanazono G; Shinoda K; Ohde H; Miyake Y
    Arch Ophthalmol; 2011 May; 129(5):597-602. PubMed ID: 21555613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa.
    Trichonas G; Traboulsi EI; Ehlers JP
    Ophthalmic Genet; 2017; 38(4):320-324. PubMed ID: 27880076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy.
    Birch DG; Anderson JL; Fish GE
    Ophthalmology; 1999 Feb; 106(2):258-68. PubMed ID: 9951474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term follow-up of Stargardt's disease and fundus flavimaculatus.
    Armstrong JD; Meyer D; Xu S; Elfervig JL
    Ophthalmology; 1998 Mar; 105(3):448-57; discussion 457-8. PubMed ID: 9499775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration.
    Mataftsi A; Schorderet DF; Chachoua L; Boussalah M; Nouri MT; Barthelmes D; Borruat FX; Munier FL
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5160-7. PubMed ID: 17962469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of fundus autofluorescence of age-related macular degeneration between a fundus camera and a confocal scanning laser ophthalmoscope.
    Yamamoto M; Kohno T; Shiraki K
    Osaka City Med J; 2009 Jun; 55(1):19-27. PubMed ID: 19725431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus.
    Lois N; Holder GE; Fitzke FW; Plant C; Bird AC
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2668-75. PubMed ID: 10509664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyperosmolarity response of ocular standing potential as a clinical test for retinal pigment epithelium activity. Chorioretinal dystrophies.
    Yonemura D; Kawasaki K; Madachi-Yamamoto S
    Doc Ophthalmol; 1984 May; 57(3):163-73. PubMed ID: 6432505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mapping of central visual function by microperimetry and autofluorescence in patients with Best's vitelliform dystrophy.
    Jarc-Vidmar M; Popovic P; Hawlina M
    Eye (Lond); 2006 Jun; 20(6):688-96. PubMed ID: 15951755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy.
    Robson AG; Michaelides M; Luong VA; Holder GE; Bird AC; Webster AR; Moore AT; Fitzke FW
    Br J Ophthalmol; 2008 Jan; 92(1):95-102. PubMed ID: 17962389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association between abnormal autofluorescence and photoreceptor disorganization in retinitis pigmentosa.
    Murakami T; Akimoto M; Ooto S; Suzuki T; Ikeda H; Kawagoe N; Takahashi M; Yoshimura N
    Am J Ophthalmol; 2008 Apr; 145(4):687-94. PubMed ID: 18242574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fundus autofluorescence imaging in serous and drusenoid pigment epithelial detachments associated with age-related macular degeneration.
    Karadimas P; Bouzas EA
    Am J Ophthalmol; 2005 Dec; 140(6):1163-5. PubMed ID: 16376680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wide-field fundus autofluorescence imaging to evaluate retinal function in patients with retinitis pigmentosa.
    Ogura S; Yasukawa T; Kato A; Usui H; Hirano Y; Yoshida M; Ogura Y
    Am J Ophthalmol; 2014 Nov; 158(5):1093-8. PubMed ID: 25062603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fundus autofluorescence in Pseudoxanthoma elasticum.
    Finger RP; Charbel Issa P; Ladewig M; Götting C; Holz FG; Scholl HP
    Retina; 2009; 29(10):1496-505. PubMed ID: 19823106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa.
    Dysli C; Schuerch K; Escher P; Wolf S; Zinkernagel MS
    Invest Ophthalmol Vis Sci; 2018 Apr; 59(5):1769-1778. PubMed ID: 29610860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fundus autofluorescence and progression of age-related macular degeneration.
    Schmitz-Valckenberg S; Fleckenstein M; Scholl HP; Holz FG
    Surv Ophthalmol; 2009; 54(1):96-117. PubMed ID: 19171212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.