These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 18345082)

  • 1. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.
    Nelson DH; Walters DL; Mackerrow EP; Schmitt MJ; Quick CR; Porch WM; Petrin RR
    Appl Opt; 2000 Apr; 39(12):1857-71. PubMed ID: 18345082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Simulation and Analysis of Mie-Scattering Lidar for Detecting Atmospheric Turbulence Based on Non-Kolmogorov Turbulence Power Spectrum Model.
    Zhang Y; Mao J; Li J; Gong X
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile.
    Lu Y; Mao J; Zhang Y; Zhao H; Zhou C; Gong X; Wang Q; Zhang Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution properties of partially coherent radially polarized Laguerre-Gaussian vortex beams in an anisotropic turbulent atmosphere.
    Zhao L; Xu Y; Dan Y
    Opt Express; 2021 Oct; 29(22):34986-35002. PubMed ID: 34808945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere.
    Guo L; Xing M; Tang Y; Dan J
    Sensors (Basel); 2008 May; 8(5):3056-3066. PubMed ID: 27879865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere.
    Banakh VA; Smalikho IN; Werner C
    Appl Opt; 2000 Oct; 39(30):5403-14. PubMed ID: 18354537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speckle-field propagation in 'frozen' turbulence: brightness function approach.
    Dudorov VV; Vorontsov MA; Kolosov VV
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1924-36. PubMed ID: 16835650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems.
    Belmonte A; Rye BJ
    Appl Opt; 2000 May; 39(15):2401-11. PubMed ID: 18345150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation properties of a partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beam through anisotropic atmospheric turbulence.
    Cao J; Tang R; Huang K; Li Y; Xu Y
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):371-381. PubMed ID: 38437423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance.
    Belmonte A
    Appl Opt; 2000 Oct; 39(30):5426-45. PubMed ID: 18354539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory.
    Mao J; Zhang Y; Li J; Gong X; Zhao H; Rao Z
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical model for fading return signals in coherent lidars.
    Belmonte A
    Appl Opt; 2010 Dec; 49(35):6737-48. PubMed ID: 21151230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of atmospheric turbulence on heterodyne lidar performance.
    Belen'kii MS
    Appl Opt; 1993 Sep; 32(27):5368-72. PubMed ID: 20856346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target.
    MacKerrow EP; Schmitt MJ
    Appl Opt; 1997 Sep; 36(27):6921-37. PubMed ID: 18259564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporally averaged speckle noise in wavefront sensors for beam projection in weak turbulence.
    Allan GW; Allured R; Ashcom J; Liu L; Cahoy K
    Appl Opt; 2021 Jun; 60(16):4723-4731. PubMed ID: 34143030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential absorption lidar signal averaging.
    Grant WB; Brothers AM; Bogan JR
    Appl Opt; 1988 May; 27(10):1934-8. PubMed ID: 20531685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spreading evolution of a linear phase-locked hollow beam array in atmospheric turbulence.
    Zhao J; Dong R; Li Y; Zou J; Qiao C; Lu L
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):987-995. PubMed ID: 36215528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.