These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 18345838)
1. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions. Moleti A; Sisto R J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838 [TBL] [Abstract][Full Text] [Related]
2. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates. Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786 [TBL] [Abstract][Full Text] [Related]
3. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions. Rana B; Barman A J Laryngol Otol; 2011 Sep; 125(9):911-6. PubMed ID: 21729428 [TBL] [Abstract][Full Text] [Related]
4. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea. Vetesnik A; Nobili R; Gummer A ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828 [TBL] [Abstract][Full Text] [Related]
5. Comment on "Ear Asymmetries in middle-ear, cochlear, and brainstem responses in human infants" [J. Acoust. Soc. Am. 123, 1504-1512]. Sininger Y; Cone B J Acoust Soc Am; 2008 Sep; 124(3):1401-3. PubMed ID: 19045630 [TBL] [Abstract][Full Text] [Related]
6. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses. Harte JM; Pigasse G; Dau T J Acoust Soc Am; 2009 Sep; 126(3):1291-301. PubMed ID: 19739743 [TBL] [Abstract][Full Text] [Related]
7. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. Shera CA; Tubis A; Talmadge CL; de Boer E; Fahey PF; Guinan JJ J Acoust Soc Am; 2007 Mar; 121(3):1564-75. PubMed ID: 17407894 [TBL] [Abstract][Full Text] [Related]
8. A comparison of OAEs arising from different generation mechanisms in guinea pig. Withnell RH; Dhar S; Thomsen A Hear Res; 2005 Sep; 207(1-2):76-86. PubMed ID: 15935577 [TBL] [Abstract][Full Text] [Related]
9. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model. Sisto R; Moleti A J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787 [TBL] [Abstract][Full Text] [Related]
10. Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency. Notaro G; Al-Maamury AM; Moleti A; Sisto R J Acoust Soc Am; 2007 Dec; 122(6):3576-85. PubMed ID: 18247765 [TBL] [Abstract][Full Text] [Related]
12. Searching for the optimal stimulus eliciting auditory brainstem responses in humans. Fobel O; Dau T J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2213-22. PubMed ID: 15532653 [TBL] [Abstract][Full Text] [Related]
13. Auditory brainstem response and otoacoustic emissions in Duane retraction syndrome. Sevik O; Akdogan O; Gocmen ES; Ozcan KM; Yazar Z; Dere H Int J Pediatr Otorhinolaryngol; 2008 Aug; 72(8):1167-70. PubMed ID: 18479758 [TBL] [Abstract][Full Text] [Related]
14. Cochlear compression wave: an implication of the Allen-Fahey experiment. Ren T; Nuttall AL J Acoust Soc Am; 2006 Apr; 119(4):1940-2. PubMed ID: 16642805 [TBL] [Abstract][Full Text] [Related]
15. Clinical evaluation of cochlear hearing status in dogs using evoked otoacoustic emissions. Gonçalves R; McBrearty A; Pratola L; Calvo G; Anderson TJ; Penderis J J Small Anim Pract; 2012 Jun; 53(6):344-51. PubMed ID: 22647213 [TBL] [Abstract][Full Text] [Related]
16. Experimental otoacoustic emission and auditory brainstem response changes by stellate ganglion blockage in rat. Firat Y; Kizilay A; Ozturan O; Ekici N Am J Otolaryngol; 2008; 29(5):339-45. PubMed ID: 18722891 [TBL] [Abstract][Full Text] [Related]
17. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil. Dong W J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837 [TBL] [Abstract][Full Text] [Related]
19. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves. Meenderink SW; van der Heijden M J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817 [TBL] [Abstract][Full Text] [Related]
20. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels. Sisto R; Moleti A J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]