These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18345840)

  • 1. Inverted direction of wave propagation (IDWP) in the cochlea.
    de Boer E; Zheng J; Porsov E; Nuttall AL
    J Acoust Soc Am; 2008 Mar; 123(3):1513-21. PubMed ID: 18345840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing Distortion Product (DP) Waves in a Cochlear Model.
    de Boer E; Shera CA; Nuttall AL
    AIP Conf Proc; 2011 Nov; 1403(1):557-562. PubMed ID: 25284909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave propagation patterns in a "classical" three-dimensional model of the cochlea.
    de Boer E; Nuttall AL; Shera CA
    J Acoust Soc Am; 2007 Jan; 121(1):352-62. PubMed ID: 17297790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse wave propagation in the cochlea.
    He W; Fridberger A; Porsov E; Grosh K; Ren T
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2729-33. PubMed ID: 18272498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward- and Reverse-Traveling Waves in DP Phenomenology: Does Inverted Direction of Wave Propagation Occur in Classical Models?
    Sisto R; Shera CA; Moleti A; Botti T
    AIP Conf Proc; 2011; 1403():. PubMed ID: 24376285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direction of wave propagation in the cochlea for internally excited basilar membrane.
    Li Y; Grosh K
    J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supporting evidence for reverse cochlear traveling waves.
    Dong W; Olson ES
    J Acoust Soc Am; 2008 Jan; 123(1):222-40. PubMed ID: 18177153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data.
    Vetešník A; Gummer AW
    J Acoust Soc Am; 2012 May; 131(5):3914-34. PubMed ID: 22559367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion products and backward-traveling waves in nonlinear active models of the cochlea.
    Sisto R; Moleti A; Botti T; Bertaccini D; Shera CA
    J Acoust Soc Am; 2011 May; 129(5):3141-52. PubMed ID: 21568417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse propagation of sound in the gerbil cochlea.
    Ren T
    Nat Neurosci; 2004 Apr; 7(4):333-4. PubMed ID: 15034589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-tone distortion at different longitudinal locations on the basilar membrane.
    He W; Nuttall AL; Ren T
    Hear Res; 2007 Jun; 228(1-2):112-22. PubMed ID: 17353104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of acoustic distortion products in a locally active model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1997 Mar; 101(3):1527-31. PubMed ID: 9069623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.
    Rhode WS; Cooper NP
    Hear Res; 1993 Mar; 66(1):31-45. PubMed ID: 8473244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.