BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 18345871)

  • 1. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.
    Olejniczak M; Bast R; Saue T; Pecul M
    J Chem Phys; 2012 Jan; 136(1):014108. PubMed ID: 22239770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-component relativistic theory for nuclear magnetic shielding constants: the orbital decomposition approach.
    Xiao Y; Peng D; Liu W
    J Chem Phys; 2007 Feb; 126(8):081101. PubMed ID: 17343433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques.
    Autschbach J
    J Chem Phys; 2008 Sep; 129(9):094105. PubMed ID: 19044863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-component relativistic theory for nuclear magnetic shielding constants: critical assessments of different approaches.
    Xiao Y; Liu W; Cheng L; Peng D
    J Chem Phys; 2007 Jun; 126(21):214101. PubMed ID: 17567184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic two-component calculations of electronic g-tensors that include spin polarization.
    Malkin I; Malkina OL; Malkin VG; Kaupp M
    J Chem Phys; 2005 Dec; 123(24):244103. PubMed ID: 16396530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances and perspectives in four-component Dirac-Kohn-Sham calculations.
    Belpassi L; Storchi L; Quiney HM; Tarantelli F
    Phys Chem Chem Phys; 2011 Jul; 13(27):12368-94. PubMed ID: 21670843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon and proton shielding tensors in methyl halides.
    Kantola AM; Lantto P; Vaara J; Jokisaari J
    Phys Chem Chem Phys; 2010 Mar; 12(11):2679-92. PubMed ID: 20200746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals.
    Autschbach J
    J Chem Phys; 2008 Apr; 128(16):164112. PubMed ID: 18447426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.
    Nahrwold S; Berger R
    J Chem Phys; 2009 Jun; 130(21):214101. PubMed ID: 19508050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H2O, H2, HF, F2 and F2O nuclear magnetic shielding constants and indirect nuclear spin-spin coupling constants (SSCCs) in the BHandH/pcJ-n and BHandH/XZP Kohn-Sham limits.
    Kupka T
    Magn Reson Chem; 2009 Nov; 47(11):959-70. PubMed ID: 19681101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.