These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18346715)

  • 1. Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications.
    Zeng SJ; Tian C; Zhang X; Zuo MX
    Brain Res; 2008 Apr; 1206():44-60. PubMed ID: 18346715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis).
    Huang YF; Zhang JY; Xi C; Zeng SJ; Zhang XW; Zuo MX
    Brain Res; 2011 Feb; 1373():67-78. PubMed ID: 21167138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in neurogenesis differentiate between core and shell regions of auditory nuclei in the turtle (Pelodiscus sinensis): evolutionary implications.
    Zeng SJ; Xi C; Zhang XW; Zuo MX
    Brain Behav Evol; 2007; 70(3):174-86. PubMed ID: 17595537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus).
    Zeng S; Lin Y; Yang L; Zhang X; Zuo M
    Brain Res; 2008 Jun; 1216():24-37. PubMed ID: 18486109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary significance of delayed neurogenesis in the core versus shell auditory areas of Mus musculus.
    Zeng SJ; Lin YT; Tian CP; Song KJ; Zhang XW; Zuo MX
    J Comp Neurol; 2009 Aug; 515(5):600-13. PubMed ID: 19480001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenesis in the vocalization pathway of Xenopus laevis.
    Gorlick DL; Kelley DB
    J Comp Neurol; 1987 Mar; 257(4):614-27. PubMed ID: 3693599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species.
    Zeng S; Li J; Zhang X; Zuo M
    Brain Behav Evol; 2007; 70(1):1-20. PubMed ID: 17389792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis.
    López JM; Smeets WJ; González A
    J Comp Neurol; 2002 Nov; 453(4):418-34. PubMed ID: 12389211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications.
    Zeng S; Zhang X; Peng W; Zuo M
    J Comp Neurol; 2004 Mar; 470(2):192-209. PubMed ID: 14750161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinction in the immunoreactivities of two calcium-binding proteins and neuronal birthdates in the first and higher-order somatosensory thalamic nuclei of mice: Evolutionary implications.
    Zhang JY; Lin YT; Gao YY; Chao-Xi ; Zhang XB; Zhang XW; Zeng SJ
    J Comp Neurol; 2015 Dec; 523(18):2738-51. PubMed ID: 26183901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis.
    Jönsson ME; Ono Y; Björklund A; Thompson LH
    Exp Neurol; 2009 Sep; 219(1):341-54. PubMed ID: 19555687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amphibian octavo-lateralis system and its regressive and progressive evolution.
    Fritzsch B
    Acta Biol Hung; 1988; 39(2-3):305-22. PubMed ID: 3077009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional regulation of Pax2 expression pattern in mesencephalic and diencephalic alar plate.
    Vieira C; Garcia-Lopez R; Martínez S
    Neuroscience; 2006; 137(1):7-11. PubMed ID: 16289837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
    Behrend O; Branoner F; Zhivkov Z; Ziehm U
    Eur J Neurosci; 2006 Feb; 23(3):729-44. PubMed ID: 16487154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus.
    Sharma V; Nag TC; Wadhwa S; Roy TS
    J Chem Neuroanat; 2009 Mar; 37(2):78-86. PubMed ID: 19095058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of urocortinergic neurons below the midbrain central gray in the physiological response to restraint stress in pigeons.
    Cunha RP; Reiner A; Toledo CA
    Brain Res; 2007 May; 1147():175-83. PubMed ID: 17320052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell proliferation in the Rana catesbeiana auditory medulla over metamorphic development.
    Chapman JA; Weinstein JL; Simmons AM
    J Neurobiol; 2006 Feb; 66(2):115-33. PubMed ID: 16288474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCNA positivity in the mesencephalic matrix areas in the adult of a Teleost, Carassius carassius L.
    Margotta V; Morelli A; Gelosi E; Alfei L
    Ital J Anat Embryol; 2002; 107(3):185-98. PubMed ID: 12437145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and death of cells of the mesencephalic fifth nucleus in Xenopus laevis larvae.
    Kollros JJ; Thiesse ML
    J Comp Neurol; 1985 Mar; 233(4):481-9. PubMed ID: 3980781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1.
    Kim HJ; McMillan E; Han F; Svendsen CN
    Stem Cells; 2009 Feb; 27(2):390-8. PubMed ID: 19008346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.