BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18346819)

  • 1. Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites?
    Giuliano C; Parikh V; Ward JR; Chiamulera C; Sarter M
    Neurochem Int; 2008 Jun; 52(7):1343-50. PubMed ID: 18346819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-by-second measurement of acetylcholine release in prefrontal cortex.
    Bruno JP; Gash C; Martin B; Zmarowski A; Pomerleau F; Burmeister J; Huettl P; Gerhardt GA
    Eur J Neurosci; 2006 Nov; 24(10):2749-57. PubMed ID: 17156201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels.
    Parikh V; Pomerleau F; Huettl P; Gerhardt GA; Sarter M; Bruno JP
    Eur J Neurosci; 2004 Sep; 20(6):1545-54. PubMed ID: 15355321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.
    Parikh V; Man K; Decker MW; Sarter M
    J Neurosci; 2008 Apr; 28(14):3769-80. PubMed ID: 18385335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of choline and acetylcholine Pt microelectrodes.
    Huang Z; Villarta-Snow R; Lubrano GJ; Guilbault GG
    Anal Biochem; 1993 Nov; 215(1):31-7. PubMed ID: 8297012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo.
    Mitchell KM
    Anal Chem; 2004 Feb; 76(4):1098-106. PubMed ID: 14961744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of cholinergic tone and neuronal network dynamics in vivo in the rat brain using a novel choline oxidase based electrochemical biosensor.
    Santos RM; Laranjinha J; Barbosa RM; Sirota A
    Biosens Bioelectron; 2015 Jul; 69():83-94. PubMed ID: 25706061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic microelectrode detectors for choline and acetylcholine following separation by capillary electrophoresis.
    Mukherjee J; Kirchhoff JR
    Anal Chem; 2009 Aug; 81(16):6996-7002. PubMed ID: 20337384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.
    Muramatsu I; Uwada J; Masuoka T; Yoshiki H; Sada K; Lee KS; Nishio M; Ishibashi T; Taniguchi T
    J Neurochem; 2017 Oct; 143(1):76-86. PubMed ID: 28700094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals.
    Parikh V; Sarter M
    J Neurochem; 2006 Apr; 97(2):488-503. PubMed ID: 16539662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling.
    Parikh V; Ji J; Decker MW; Sarter M
    J Neurosci; 2010 Mar; 30(9):3518-30. PubMed ID: 20203212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal acetylcholine release controls cue detection on multiple timescales.
    Parikh V; Kozak R; Martinez V; Sarter M
    Neuron; 2007 Oct; 56(1):141-54. PubMed ID: 17920021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline.
    Schuvailo ON; Dzyadevych SV; El'skaya AV; Gautier-Sauvigné S; Csöregi E; Cespuglio R; Soldatkin AP
    Biosens Bioelectron; 2005 Jul; 21(1):87-94. PubMed ID: 15967355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic transmission during nicotine withdrawal is influenced by age and pre-exposure to nicotine: implications for teenage smoking.
    Carcoba LM; Orfila JE; Natividad LA; Torres OV; Pipkin JA; Ferree PL; Castañeda E; Moss DE; O'Dell LE
    Dev Neurosci; 2014; 36(3-4):347-55. PubMed ID: 24854235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of acetylcholine receptors and dopamine transporter in regulation of extracellular dopamine in rat carotid body cultures grown in chronic hypoxia or nicotine.
    Jackson A; Nurse CA
    J Neurochem; 1998 Feb; 70(2):653-62. PubMed ID: 9453559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in enzymes of the cholinergic system and acetylcholine release in the cerebra of aging male Fischer rats.
    Sastry BV; Janson VE; Jaiswal N; Tayeb OS
    Pharmacology; 1983; 26(2):61-72. PubMed ID: 6844389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phasic oxygen dynamics confounds fast choline-sensitive biosensor signals in the brain of behaving rodents.
    Santos RM; Sirota A
    Elife; 2021 Feb; 10():. PubMed ID: 33587035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS.
    Burmeister JJ; Pomerleau F; Huettl P; Gash CR; Werner CE; Bruno JP; Gerhardt GA
    Biosens Bioelectron; 2008 Apr; 23(9):1382-9. PubMed ID: 18243683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Klein J
    Neurochem Int; 2008 May; 52(6):972-8. PubMed ID: 18023504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic neuromuscular synapses in Aplysia have low endogenous acetylcholinesterase activity and a high-affinity uptake system for acetylcholine.
    Lloyd PE; Church PJ
    J Neurosci; 1994 Nov; 14(11 Pt 1):6722-33. PubMed ID: 7965073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.