These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18347019)

  • 21. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
    Santos-Ocaña C; Navas P; Crane FL; Córdoba F
    J Bioenerg Biomembr; 1995 Dec; 27(6):597-603. PubMed ID: 8746846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of non-transferrin iron uptake by iron deprivation in K562 cells.
    Kovar J; Neubauerova J; Cimburova M; Truksa J; Balusikova K; Horak J
    Blood Cells Mol Dis; 2006; 37(2):95-9. PubMed ID: 16904349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the Ca2+ dependence of non-transferrin-bound iron uptake in PC12 cells.
    Mwanjewe J; Martinez R; Agrawal P; Samson SE; Coughlin MD; Brassard P; Grover AK
    J Biol Chem; 2000 Oct; 275(43):33512-5. PubMed ID: 10906140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells.
    Parkes JG; Randell EW; Olivieri NF; Templeton DM
    Biochim Biophys Acta; 1995 Apr; 1243(3):373-80. PubMed ID: 7727512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic analysis of iron accumulation by endothelial cells of the BBB.
    McCarthy RC; Kosman DJ
    Biometals; 2012 Aug; 25(4):665-75. PubMed ID: 22434419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae.
    Santos-Ocaña C; Córdoba F; Crane FL; Clarke CF; Navas P
    J Biol Chem; 1998 Apr; 273(14):8099-105. PubMed ID: 9525912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ascorbate efflux as a new strategy for iron reduction and transport in plants.
    Grillet L; Ouerdane L; Flis P; Hoang MT; Isaure MP; Lobinski R; Curie C; Mari S
    J Biol Chem; 2014 Jan; 289(5):2515-25. PubMed ID: 24347170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aluminum exposure affects transferrin-dependent and -independent iron uptake by K562 cells.
    Pérez G; Pregi N; Vittori D; Di Risio C; Garbossa G; Nesse A
    Biochim Biophys Acta; 2005 Aug; 1745(1):124-30. PubMed ID: 16085060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinetic study of the coupled iron-ceruloplasmin catalyzed oxidation of ascorbate in the presence of albumin.
    Løvstad RA
    Biometals; 1995 Oct; 8(4):328-31. PubMed ID: 7580053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium ascorbate (vitamin C) induces apoptosis in melanoma cells via the down-regulation of transferrin receptor dependent iron uptake.
    Kang JS; Cho D; Kim YI; Hahm E; Kim YS; Jin SN; Kim HN; Kim D; Hur D; Park H; Hwang YI; Lee WJ
    J Cell Physiol; 2005 Jul; 204(1):192-7. PubMed ID: 15672419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ceruloplasmin and ascorbate in cellular iron release.
    Richardson DR
    J Lab Clin Med; 1999 Nov; 134(5):454-65. PubMed ID: 10560938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplasma membrane redox system of HL-60 cells is controlled by cAMP.
    Rodríguez-Aguilera JC; Nakayama K; Arroyo A; Villalba JM; Navas P
    J Biol Chem; 1993 Dec; 268(35):26346-9. PubMed ID: 8253758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system.
    Alcain FJ; Buron MI; Villalba JM; Navas P
    Biochim Biophys Acta; 1991 Mar; 1073(2):380-5. PubMed ID: 2009284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties.
    Rumsey SC; Welch RW; Garraffo HM; Ge P; Lu SF; Crossman AT; Kirk KL; Levine M
    J Biol Chem; 1999 Aug; 274(33):23215-22. PubMed ID: 10438494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.
    Nilsen T
    Biochim Biophys Acta; 1991 Oct; 1095(1):39-45. PubMed ID: 1657189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells.
    Garrick LM; Dolan KG; Romano MA; Garrick MD
    J Cell Physiol; 1999 Mar; 178(3):349-58. PubMed ID: 9989781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sepsis inhibits reduction of dehydroascorbic acid and accumulation of ascorbate in astroglial cultures: intracellular ascorbate depletion increases nitric oxide synthase induction and glutamate uptake inhibition.
    Korcok J; Wu F; Tyml K; Hammond RR; Wilson JX
    J Neurochem; 2002 Apr; 81(1):185-93. PubMed ID: 12067232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of non-transferrin-bound iron (ferric citrate) uptake by rat hepatocytes in culture.
    Baker E; Baker SM; Morgan EH
    Biochim Biophys Acta; 1998 Mar; 1380(1):21-30. PubMed ID: 9545519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport.
    Inman RS; Coughlan MM; Wessling-Resnick M
    Biochemistry; 1994 Oct; 33(39):11850-7. PubMed ID: 7918403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.