These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18347110)

  • 41. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2664-8. PubMed ID: 2481426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates.
    Russell JB
    Appl Environ Microbiol; 1993 Jun; 59(6):1747-51. PubMed ID: 8328799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of chlorhexidine diacetate on ruminal microorganisms.
    Attia-Ismail SA; Martin SA; Callaway TR
    Curr Microbiol; 1998 Jun; 36(6):348-52. PubMed ID: 9608746
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Streptococcus bovis Isolated from Bovine Rumen on the Fermentation Characteristics and Nutritive Value of Tanzania Grass Silage.
    Zanine Ade M; Bonelli EA; de Souza AL; Ferreira Dde J; Santos EM; Ribeiro MD; Geron LJ; Pinho RM
    ScientificWorldJournal; 2016; 2016():8517698. PubMed ID: 27073806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of pH on the heat production and membrane resistance of Streptococcus bovis.
    Russell JB
    Arch Microbiol; 1992; 158(1):54-8. PubMed ID: 1444715
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1998 Mar; 64(3):976-81. PubMed ID: 9501437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255.
    Whitford MF; McPherson MA; Forster RJ; Teather RM
    Appl Environ Microbiol; 2001 Feb; 67(2):569-74. PubMed ID: 11157218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mode of action of piscicocin CS526 produced by Carnobacterium piscicola CS526.
    Suzuki M; Yamamoto T; Kawai Y; Inoue N; Yamazaki K
    J Appl Microbiol; 2005; 98(5):1146-51. PubMed ID: 15836484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of extracellular lactate on growth of rumen lactate producers.
    Simunek J; Marounek M
    Arch Tierernahr; 1994; 46(3):277-81. PubMed ID: 7619002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficacy of a Ruminal Bacteriocin Against Pure and Mixed Cultures of Bovine Mastitis Pathogens.
    Godoy-Santos F; Pinto MS; Barbosa AAT; Brito MAVP; Mantovani HC
    Indian J Microbiol; 2019 Sep; 59(3):304-312. PubMed ID: 31388207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Streptococcus bovis, taxonomic status, clinical relevance and antimicrobial susceptibility].
    Romero-Hernández B; del Campo R; Cantón R
    Enferm Infecc Microbiol Clin; 2013 Feb; 31 Suppl 1():14-9. PubMed ID: 23453226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Safety evaluation of the antimicrobial peptide bovicin HC5 orally administered to a murine model.
    Paiva AD; Fernandes KM; Dias RS; Rocha Ados S; Oliveira LL; Neves CA; Paula SO; Mantovani HC
    BMC Microbiol; 2013 Mar; 13():69. PubMed ID: 23537130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Susceptibility of 45 Streptococcus bovis isolates to five antibiotic agents.
    Peretz A; Dinisman-Zavulunov E; Koifman A; Brodsky D; Isakovich N; Glyatman T; Pastukh N; Paritsky M
    Int J Antimicrob Agents; 2014 Mar; 43(3):298-9. PubMed ID: 24560425
    [No Abstract]   [Full Text] [Related]  

  • 57. Inhibition of fructan-fermenting equine faecal bacteria and Streptococcus bovis by hops (Humulus lupulus L.) β-acid.
    Harlow BE; Lawrence LM; Kagan IA; Flythe MD
    J Appl Microbiol; 2014 Aug; 117(2):329-39. PubMed ID: 24775300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of ammonia and amino acids on the growth and proteolytic activity of three species of rumen bacteria: Prevotella albensis, Butyrivibrio fibrisolvens, and Streptococcus bovis.
    Sales M; Lucas F; Blanchart G
    Curr Microbiol; 2000 Jun; 40(6):380-6. PubMed ID: 10827280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of a bacteriocin, Thermophilin 1277, produced by Streptococcus thermophilus SBT1277.
    Kabuki T; Uenishi H; Watanabe M; Seto Y; Nakajima H
    J Appl Microbiol; 2007 Apr; 102(4):971-80. PubMed ID: 17381740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.
    Paiva AD; de Oliveira MD; de Paula SO; Baracat-Pereira MC; Breukink E; Mantovani HC
    Microbiology (Reading); 2012 Nov; 158(Pt 11):2851-2858. PubMed ID: 22956757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.