These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 18347702)
1. Femto-Newton light force measurement at the thermal noise limit. Mueller F; Heugel S; Wang LJ Opt Lett; 2008 Mar; 33(6):539-41. PubMed ID: 18347702 [TBL] [Abstract][Full Text] [Related]
2. Sub-femto-Newton sensing torsion pendulum for detection of light force. Guan S; Sun J; Huang B; Cheng Y; Duan Z; Le J Opt Lett; 2022 Oct; 47(19):4997-5000. PubMed ID: 36181170 [TBL] [Abstract][Full Text] [Related]
3. Thermally activated state transition technique for femto-Newton-level force measurement. Chen FJ; Wong JS; Hsu KY; Hsu L Opt Lett; 2012 May; 37(9):1469-71. PubMed ID: 22555707 [TBL] [Abstract][Full Text] [Related]
4. Abatement of thermal noise due to internal damping in 2D oscillators with rapidly rotating test masses. Pegna R; Nobili AM; Shao M; Turyshev SG; Catastini G; Anselmi A; Spero R; Doravari S; Comandi GL; De Michele A Phys Rev Lett; 2011 Nov; 107(20):200801. PubMed ID: 22181717 [TBL] [Abstract][Full Text] [Related]
5. Force measurement goes to femto-Newton sensitivity of single microscopic particle. Zhang X; Gu B; Qiu CW Light Sci Appl; 2021 Dec; 10(1):243. PubMed ID: 34876551 [TBL] [Abstract][Full Text] [Related]
6. Optically trapped mirror for reaching the standard quantum limit. Matsumoto N; Michimura Y; Aso Y; Tsubono K Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489 [TBL] [Abstract][Full Text] [Related]
7. Thermal noise limitations to force measurements with torsion pendulums: applications to the measurement of the Casimir force and its thermal correction. Lamoreaux SK; Buttler WT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036109. PubMed ID: 15903495 [TBL] [Abstract][Full Text] [Related]
9. Observation of radiation pressure shot noise on a macroscopic object. Purdy TP; Peterson RW; Regal CA Science; 2013 Feb; 339(6121):801-4. PubMed ID: 23413350 [TBL] [Abstract][Full Text] [Related]
10. Cross-spectrum measurement of thermal-noise limited oscillators. Hati A; Nelson CW; Howe DA Rev Sci Instrum; 2016 Mar; 87(3):034708. PubMed ID: 27036804 [TBL] [Abstract][Full Text] [Related]
11. Investigating temperature-induced torque noise of a torsion pendulum based on temperature modulation at different frequencies. Long TY; Lu ZJ; Wang YX; Qiao MN; Liu Q; Xue C; Tan WH; Yang SQ Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37991415 [TBL] [Abstract][Full Text] [Related]
12. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor. Fleyer M; Horowitz M Opt Express; 2018 Apr; 26(7):9107-9133. PubMed ID: 29715868 [TBL] [Abstract][Full Text] [Related]
16. A technique for continuous measurement of the quality factor of mechanical oscillators. Smith ND Rev Sci Instrum; 2015 May; 86(5):053907. PubMed ID: 26026536 [TBL] [Abstract][Full Text] [Related]
17. Quantum lock-in force sensing using optical clock Doppler velocimetry. Shaniv R; Ozeri R Nat Commun; 2017 Feb; 8():14157. PubMed ID: 28186103 [TBL] [Abstract][Full Text] [Related]
18. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Teufel JD; Donner T; Castellanos-Beltran MA; Harlow JW; Lehnert KW Nat Nanotechnol; 2009 Dec; 4(12):820-3. PubMed ID: 19893515 [TBL] [Abstract][Full Text] [Related]