These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18347702)

  • 1. Femto-Newton light force measurement at the thermal noise limit.
    Mueller F; Heugel S; Wang LJ
    Opt Lett; 2008 Mar; 33(6):539-41. PubMed ID: 18347702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-femto-Newton sensing torsion pendulum for detection of light force.
    Guan S; Sun J; Huang B; Cheng Y; Duan Z; Le J
    Opt Lett; 2022 Oct; 47(19):4997-5000. PubMed ID: 36181170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally activated state transition technique for femto-Newton-level force measurement.
    Chen FJ; Wong JS; Hsu KY; Hsu L
    Opt Lett; 2012 May; 37(9):1469-71. PubMed ID: 22555707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abatement of thermal noise due to internal damping in 2D oscillators with rapidly rotating test masses.
    Pegna R; Nobili AM; Shao M; Turyshev SG; Catastini G; Anselmi A; Spero R; Doravari S; Comandi GL; De Michele A
    Phys Rev Lett; 2011 Nov; 107(20):200801. PubMed ID: 22181717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force measurement goes to femto-Newton sensitivity of single microscopic particle.
    Zhang X; Gu B; Qiu CW
    Light Sci Appl; 2021 Dec; 10(1):243. PubMed ID: 34876551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal noise limitations to force measurements with torsion pendulums: applications to the measurement of the Casimir force and its thermal correction.
    Lamoreaux SK; Buttler WT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036109. PubMed ID: 15903495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces.
    Liang S; Medich D; Czajkowsky DM; Sheng S; Yuan JY; Shao Z
    Ultramicroscopy; 2000 Jul; 84(1-2):119-25. PubMed ID: 10896145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of radiation pressure shot noise on a macroscopic object.
    Purdy TP; Peterson RW; Regal CA
    Science; 2013 Feb; 339(6121):801-4. PubMed ID: 23413350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-spectrum measurement of thermal-noise limited oscillators.
    Hati A; Nelson CW; Howe DA
    Rev Sci Instrum; 2016 Mar; 87(3):034708. PubMed ID: 27036804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating temperature-induced torque noise of a torsion pendulum based on temperature modulation at different frequencies.
    Long TY; Lu ZJ; Wang YX; Qiao MN; Liu Q; Xue C; Tan WH; Yang SQ
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37991415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.
    Fleyer M; Horowitz M
    Opt Express; 2018 Apr; 26(7):9107-9133. PubMed ID: 29715868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude Sensing below the Zero-Point Fluctuations with a Two-Dimensional Trapped-Ion Mechanical Oscillator.
    Gilmore KA; Bohnet JG; Sawyer BC; Britton JW; Bollinger JJ
    Phys Rev Lett; 2017 Jun; 118(26):263602. PubMed ID: 28707910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum optomechanics without the radiation pressure force noise.
    Davuluri S
    Opt Lett; 2021 Feb; 46(4):904-907. PubMed ID: 33577544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Spectrum PM Noise Measurement, Thermal Energy, and Metamaterial Filters.
    Gruson Y; Giordano V; Rohde UL; Poddar AK; Rubiola E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):634-642. PubMed ID: 28060705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A technique for continuous measurement of the quality factor of mechanical oscillators.
    Smith ND
    Rev Sci Instrum; 2015 May; 86(5):053907. PubMed ID: 26026536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum lock-in force sensing using optical clock Doppler velocimetry.
    Shaniv R; Ozeri R
    Nat Commun; 2017 Feb; 8():14157. PubMed ID: 28186103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical motion measured with an imprecision below that at the standard quantum limit.
    Teufel JD; Donner T; Castellanos-Beltran MA; Harlow JW; Lehnert KW
    Nat Nanotechnol; 2009 Dec; 4(12):820-3. PubMed ID: 19893515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Backaction Evading Measurement of Collective Mechanical Modes.
    Ockeloen-Korppi CF; Damskägg E; Pirkkalainen JM; Clerk AA; Woolley MJ; Sillanpää MA
    Phys Rev Lett; 2016 Sep; 117(14):140401. PubMed ID: 27740800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.