These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18347704)

  • 41. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial.
    Chen K; Feng Y; Cui L; Zhao J; Jiang T; Zhu B
    Sci Rep; 2017 Feb; 7():42802. PubMed ID: 28202903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Double-element metamaterial with negative index at near-infrared wavelengths.
    Pshenay-Severin E; Hübner U; Menzel C; Helgert C; Chipouline A; Rockstuhl C; Tünnermann A; Lederer F; Pertsch T
    Opt Lett; 2009 Jun; 34(11):1678-80. PubMed ID: 19488146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Realizing Tunable Inverse and Normal Doppler Shifts in Reconfigurable RF Metamaterials.
    Ran J; Zhang Y; Chen X; Fang K; Zhao J; Sun Y; Chen H
    Sci Rep; 2015 Jun; 5():11659. PubMed ID: 26111643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.
    Chiu KP; Kao TS; Tsai DP
    J Microsc; 2008 Feb; 229(Pt 2):313-9. PubMed ID: 18304091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manipulating electromagnetic wave polarizations by anisotropic metamaterials.
    Hao J; Yuan Y; Ran L; Jiang T; Kong JA; Chan CT; Zhou L
    Phys Rev Lett; 2007 Aug; 99(6):063908. PubMed ID: 17930829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced asymmetric transmissions attributed to the cavity coupling hybrid resonance in a continuous omega-shaped metamaterial.
    Wang YH; Jin RC; Li J; Li JQ; Dong ZG
    Opt Express; 2018 Feb; 26(3):3508-3517. PubMed ID: 29401878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Propagation characteristics of an extremely anisotropic metamaterial loaded helical guide.
    Sharma DK; Pathak SK
    Opt Express; 2016 Dec; 24(26):29521-29536. PubMed ID: 28059339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials.
    Wang J; Jiang Y
    Opt Express; 2017 Mar; 25(5):5206-5216. PubMed ID: 28380785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics.
    Li L; Wang J; Wang J; Ma H; Du H; Zhang J; Qu S; Xu Z
    Sci Rep; 2016 Apr; 6():24178. PubMed ID: 27052098
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials.
    Luk TS; Kim I; Campione S; Howell SW; Subramania GS; Grubbs RK; Brener I; Chen HT; Fan S; Sinclair MB
    Opt Express; 2013 May; 21(9):11107-14. PubMed ID: 23669967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Moderate-to-high optical-isolation reconfigurable 1 x 2 fiber-optic add-drop switches using a dense wavelength division multiplexing thin-film filter.
    Sumriddetchkajorn S; Chaitavon K
    Appl Opt; 2006 Aug; 45(24):6168-74. PubMed ID: 16892119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell.
    Buchnev O; Ou JY; Kaczmarek M; Zheludev NI; Fedotov VA
    Opt Express; 2013 Jan; 21(2):1633-8. PubMed ID: 23389148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retardation-film-compensated reflective bistable twisted nematic liquid-crystal displays.
    Guo JX; Sun XW
    Appl Opt; 2003 Jul; 42(19):3853-63. PubMed ID: 12868824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconfigurable metamaterials for terahertz wave manipulation.
    Hashemi MR; Cakmakyapan S; Jarrahi M
    Rep Prog Phys; 2017 Sep; 80(9):094501. PubMed ID: 28590254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms.
    Zhao J; Feng Y; Zhu B; Jiang T
    Opt Express; 2008 Oct; 16(22):18057-66. PubMed ID: 18958085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical configurations for nematic liquid crystal device switchable between reflective and transmissive modes.
    Kim KH; Jin HJ; Cheong BH; Choi HY; Shin ST; Kim JC; Yoon TH
    Appl Opt; 2010 Sep; 49(25):4774-9. PubMed ID: 20820221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultra-thin infrared metamaterial detector for multicolor imaging applications.
    Montoya JA; Tian ZB; Krishna S; Padilla WJ
    Opt Express; 2017 Sep; 25(19):23343-23355. PubMed ID: 29041635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-index metamaterial designs in the visible spectrum.
    Kwon DH; Werner DH
    Opt Express; 2007 Jul; 15(15):9267-72. PubMed ID: 19547268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.