These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 183478)
21. Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. Chidambaram MV; Barnes G; Frieden E J Inorg Biochem; 1984 Dec; 22(4):231-40. PubMed ID: 6097647 [TBL] [Abstract][Full Text] [Related]
22. Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase. Blackburn NJ; Ralle M; Hassett R; Kosman DJ Biochemistry; 2000 Mar; 39(9):2316-24. PubMed ID: 10694398 [TBL] [Abstract][Full Text] [Related]
23. EXAFS investigation of the binuclear cupric site in met T2D Rhus laccase and its azide bound derivative. Spira DJ; Co MS; Solomon EI; Hodgson KO Biochem Biophys Res Commun; 1983 Apr; 112(2):746-53. PubMed ID: 6221725 [TBL] [Abstract][Full Text] [Related]
24. The interaction of nitric oxide with ascorbate oxidase. Leeuwen FX; Wever R; Gelder BF; Avigliano L; Mondovi B Biochim Biophys Acta; 1975 Oct; 403(2):285-91. PubMed ID: 170967 [TBL] [Abstract][Full Text] [Related]
25. The reaction of mercaptans with tyrosinases and hemocyanins. Aasa R; Deinum J; Lerch K; Reinhammar B Biochim Biophys Acta; 1978 Aug; 535(2):287-98. PubMed ID: 209826 [TBL] [Abstract][Full Text] [Related]
26. Oxidative turnover increases the rate constant and extent of intramolecular electron transfer in the multicopper enzymes, ascorbate oxidase and laccase. Tollin G; Meyer TE; Cusanovich MA; Curir P; Marchesini A Biochim Biophys Acta; 1993 Dec; 1183(2):309-14. PubMed ID: 8268195 [TBL] [Abstract][Full Text] [Related]
27. The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. Gorren AC; de Boer E; Wever R Biochim Biophys Acta; 1987 Nov; 916(1):38-47. PubMed ID: 2822126 [TBL] [Abstract][Full Text] [Related]
28. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Messerschmidt A; Huber R Eur J Biochem; 1990 Jan; 187(2):341-52. PubMed ID: 2404764 [TBL] [Abstract][Full Text] [Related]
29. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides. Hematian S; Garcia-Bosch I; Karlin KD Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814 [TBL] [Abstract][Full Text] [Related]
30. The reaction of CN- with the binuclear copper site of Neurospora tyrosinase: its relevance for a comparison between tyrosinase and hemocyanin active sites. Beltramini M; Salvato B; Santamaria M; Lerch K Biochim Biophys Acta; 1990 Sep; 1040(3):365-72. PubMed ID: 2145978 [TBL] [Abstract][Full Text] [Related]
31. Multifrequency EPR evidence for a bimetallic center at the CuA site in cytochrome c oxidase. Kroneck PM; Antholine WE; Kastrau DH; Buse G; Steffens GC; Zumft WG FEBS Lett; 1990 Jul; 268(1):274-6. PubMed ID: 2166686 [TBL] [Abstract][Full Text] [Related]
32. Protonic sidedness of the binuclear iron-copper centre in cytochrome oxidase. Wikström M FEBS Lett; 1988 Apr; 231(1):247-52. PubMed ID: 2834226 [TBL] [Abstract][Full Text] [Related]
33. The binding of azide to copper-containing and cobalt-containing forms of hemocyanin from the mediterranean crab Carcinus aestuarii. Alzuet G; Bubacco L; Casella L; Rocco GP; Salvato B; Beltramini M Eur J Biochem; 1997 Jul; 247(2):688-94. PubMed ID: 9266714 [TBL] [Abstract][Full Text] [Related]
34. Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Brouwer M; Bonaventura C; Bonaventura J Biochemistry; 1983 Sep; 22(20):4713-23. PubMed ID: 6626526 [TBL] [Abstract][Full Text] [Related]
35. Resonance Raman, infrared, and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidases from Acetobacter aceti: effect of the heme peripheral formyl group substitution. Tsubaki M; Matsushita K; Adachi O; Hirota S; Kitagawa T; Hori H Biochemistry; 1997 Oct; 36(42):13034-42. PubMed ID: 9335565 [TBL] [Abstract][Full Text] [Related]
36. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? Cooper CE; Torres J; Sharpe MA; Wilson MT FEBS Lett; 1997 Sep; 414(2):281-4. PubMed ID: 9315702 [TBL] [Abstract][Full Text] [Related]
37. Characterization of cucumber ascorbate oxidase and its reaction with hexacyanoferrate (II). Kawahara K; Suzuki S; Sakurai T; Nakahara A Arch Biochem Biophys; 1985 Aug; 241(1):179-86. PubMed ID: 2992389 [TBL] [Abstract][Full Text] [Related]
38. Integral complexes of cytochrome c oxidase contain three coppers. Steffens GC; Buse G Prog Clin Biol Res; 1988; 274():687-705. PubMed ID: 2841685 [TBL] [Abstract][Full Text] [Related]
39. EPR spectra of type 3 copper centers in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase. Sakurai T; Takahashi J Biochim Biophys Acta; 1995 Apr; 1248(2):143-8. PubMed ID: 7748896 [TBL] [Abstract][Full Text] [Related]
40. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J; Fujii S; Solomon EI Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]