These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 1834781)

  • 1. Visual control of locomotion: strategies for changing direction and for going over obstacles.
    Patla AE; Prentice SD; Robinson C; Neufeld J
    J Exp Psychol Hum Percept Perform; 1991 Aug; 17(3):603-34. PubMed ID: 1834781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of steering in the presence of unexpected head yaw movements. Influence on sequencing of subtasks.
    Vallis LA; Patla AE; Adkin AL
    Exp Brain Res; 2001 May; 138(1):128-34. PubMed ID: 11374079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the cognitive demands required for young adults to adjust online obstacle avoidance strategies.
    Pitman J; Sutherland K; Vallis LA
    Exp Brain Res; 2021 Mar; 239(3):1009-1019. PubMed ID: 33507351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task.
    Marigold DS; Weerdesteyn V; Patla AE; Duysens J
    Exp Brain Res; 2007 Jan; 176(1):32-42. PubMed ID: 16819646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait termination: a review of experimental methods and the effects of ageing and gait pathologies.
    Sparrow WA; Tirosh O
    Gait Posture; 2005 Dec; 22(4):362-71. PubMed ID: 16274920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor circumvention strategies are altered by stroke: II. Postural Coordination.
    Darekar A; Lamontagne A; Fung J
    J Neuroeng Rehabil; 2017 Jun; 14(1):57. PubMed ID: 28615080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?
    Worden TA; De Jong AF; Vallis LA
    Gait Posture; 2016 Jan; 43():38-41. PubMed ID: 26669949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
    Hollands MA; Patla AE; Vickers JN
    Exp Brain Res; 2002 Mar; 143(2):221-30. PubMed ID: 11880898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of approach velocity and foot-target characteristics on the visual regulation of step length.
    Bradshaw EJ; Sparrow WA
    Hum Mov Sci; 2001 Nov; 20(4-5):401-26. PubMed ID: 11750670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects.
    Charette C; Routhier F; McFadyen BJ
    Neurosci Lett; 2015 Feb; 588():83-7. PubMed ID: 25562632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where and when do we look as we approach and step over an obstacle in the travel path?
    Patla AE; Vickers JN
    Neuroreport; 1997 Dec; 8(17):3661-5. PubMed ID: 9427347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.