These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Antarctic marine molluscs do have an HSP70 heat shock response. Clark MS; Fraser KP; Peck LS Cell Stress Chaperones; 2008; 13(1):39-49. PubMed ID: 18347940 [TBL] [Abstract][Full Text] [Related]
3. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Clark MS; Peck LS Cell Stress Chaperones; 2009 Nov; 14(6):649-60. PubMed ID: 19404777 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the effects of ocean warming and freshening on the physiological energetics and transcriptomic response of the Antarctic limpet Nacella concinna. Navarro JM; Détrée C; Morley SA; Cárdenas L; Ortiz A; Vargas-Chacoff L; Paschke K; Gallardo P; Guillemin ML; Gonzalez-Wevar C Sci Total Environ; 2020 Dec; 748():142448. PubMed ID: 33113697 [TBL] [Abstract][Full Text] [Related]
5. Differences in heavy metal concentrations and in the response of the antioxidant system to hypoxia and air exposure in the Antarctic limpet Nacella concinna. Weihe E; Kriews M; Abele D Mar Environ Res; 2010 Apr; 69(3):127-35. PubMed ID: 19833384 [TBL] [Abstract][Full Text] [Related]
6. Ocean acidification effects on the stress response in a calcifying antarctic coastal organism: The case of Nacella concinna ecotypes. de Aranzamendi MC; Servetto N; Movilla J; Bettencourt R; Sahade R Mar Pollut Bull; 2021 May; 166():112218. PubMed ID: 33721687 [TBL] [Abstract][Full Text] [Related]
7. Variable heat shock response in Antarctic biofouling serpulid worms. Nieva LV; Peck LS; Clark MS Cell Stress Chaperones; 2021 Nov; 26(6):945-954. PubMed ID: 34601709 [TBL] [Abstract][Full Text] [Related]
8. Ecological comparison of cellular stress responses among populations - normalizing RT-qPCR values to investigate differential environmental adaptations. Koenigstein S; Pöhlmann K; Held C; Abele D BMC Ecol; 2013 May; 13():21. PubMed ID: 23680017 [TBL] [Abstract][Full Text] [Related]
9. Growth in the slow lane: protein metabolism in the Antarctic limpet Nacella concinna (Strebel 1908). Fraser KP; Clarke A; Peck LS J Exp Biol; 2007 Aug; 210(Pt 15):2691-9. PubMed ID: 17644683 [TBL] [Abstract][Full Text] [Related]
10. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats. Pöhlmann K; Koenigstein S; Alter K; Abele D; Held C Cell Stress Chaperones; 2011 Nov; 16(6):621-32. PubMed ID: 21671159 [TBL] [Abstract][Full Text] [Related]
11. Temperature relations of aerial and aquatic physiological performance in a mid-intertidal limpet Cellana toreuma: adaptation to rapid changes in thermal stress during emersion. Huang X; Wang T; Ye Z; Han G; Dong Y Integr Zool; 2015 Jan; 10(1):159-70. PubMed ID: 24979525 [TBL] [Abstract][Full Text] [Related]
12. Expression of heat shock protein 70 in the thermally stressed antarctic clam Laternula elliptica. Park H; Ahn IY; Lee HE Cell Stress Chaperones; 2007; 12(3):275-82. PubMed ID: 17915560 [TBL] [Abstract][Full Text] [Related]
13. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress. González-Aravena M; Calfio C; Mercado L; Morales-Lange B; Bethke J; De Lorgeril J; Cárdenas CA Biol Res; 2018 Mar; 51(1):8. PubMed ID: 29587857 [TBL] [Abstract][Full Text] [Related]
14. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). Štětina T; Koštál V; Korbelová J PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990 [TBL] [Abstract][Full Text] [Related]
15. Geographic variation in thermal tolerance and strategies of heat shock protein expression in the land snail Theba pisana in relation to genetic structure. Mizrahi T; Goldenberg S; Heller J; Arad Z Cell Stress Chaperones; 2016 Mar; 21(2):219-38. PubMed ID: 26503612 [TBL] [Abstract][Full Text] [Related]
16. Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. Buckley BA; Place SP; Hofmann GE J Exp Biol; 2004 Oct; 207(Pt 21):3649-56. PubMed ID: 15371473 [TBL] [Abstract][Full Text] [Related]
17. Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Chankova S; Mitrovska Z; Miteva D; Oleskina YP; Yurina NP Gene; 2013 Mar; 516(1):184-9. PubMed ID: 23246695 [TBL] [Abstract][Full Text] [Related]
18. Cascading effects from survival to physiological activities, and gene expression of heat shock protein 90 on the abalone Haliotis discus hannai responding to continuous thermal stress. Park K; Lee JS; Kang JC; Kim JW; Kwak IS Fish Shellfish Immunol; 2015 Feb; 42(2):233-40. PubMed ID: 25449369 [TBL] [Abstract][Full Text] [Related]
19. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. Tomanek L; Somero GN J Exp Biol; 2002 Mar; 205(Pt 5):677-85. PubMed ID: 11907057 [TBL] [Abstract][Full Text] [Related]
20. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Montero-Barrientos M; Hermosa R; Cardoza RE; Gutiérrez S; Nicolás C; Monte E J Plant Physiol; 2010 May; 167(8):659-65. PubMed ID: 20080316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]