These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1834810)

  • 1. Rapid and selective uptake, metabolism, and cellular distribution of docosahexaenoic acid among rod and cone photoreceptor cells in the frog retina.
    Rodriguez de Turco EB; Gordon WC; Bazan NG
    J Neurosci; 1991 Nov; 11(11):3667-78. PubMed ID: 1834810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential uptake and metabolism of docosahexaenoic acid in membrane phospholipids from rod and cone photoreceptor cells of human and monkey retinas.
    Rodriguez de Turco EB; Gordon WC; Peyman GA; Bazan NG
    J Neurosci Res; 1990 Dec; 27(4):522-32. PubMed ID: 2150417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docosahexaenoic acid utilization during rod photoreceptor cell renewal.
    Gordon WC; Bazan NG
    J Neurosci; 1990 Jul; 10(7):2190-202. PubMed ID: 2142959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docosahexaenoic acid is taken up by the inner segment of frog photoreceptors leading to an active synthesis of docosahexaenoyl-inositol lipids: similarities in metabolism in vivo and in vitro.
    Rodriguez de Turco EB; Gordon WC; Bazan NG
    Curr Eye Res; 1994 Jan; 13(1):21-8. PubMed ID: 8156822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)) docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)).
    Rotstein NP; Aveldaño MI
    Biochim Biophys Acta; 1987 Sep; 921(2):221-34. PubMed ID: 2958089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic labeling of normal canine rod outer segment phospholipids in vivo and in vitro.
    Wetzel MG; Fahlman C; Alligood JP; O'Brien PJ; Aguirre GD
    Exp Eye Res; 1989 Jan; 48(1):149-60. PubMed ID: 2522054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in rabbit retina lipid metabolism induced by detachment. Decreased incorporation of [3H]DHA into phospholipids.
    Santos FF; de Turco EB; Gordon WC; Peyman GA; Bazan NG
    Int Ophthalmol; 1995-1996; 19(3):149-59. PubMed ID: 8926126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis.
    Gordon WC; Rodriguez de Turco EB; Bazan NG
    Curr Eye Res; 1992 Jan; 11(1):73-83. PubMed ID: 1532774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and metabolism of arachidonic and docosahexaenoic acids in rat pineal cells. Effect of norepinephrine.
    Delton I; Gharib A; Molière P; Lagarde M; Sarda N
    Biochim Biophys Acta; 1995 Jan; 1254(2):147-54. PubMed ID: 7827119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis.
    Rodriguez de Turco EB; Deretic D; Bazan NG; Papermaster DS
    J Biol Chem; 1997 Apr; 272(16):10491-7. PubMed ID: 9099692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of palmitate, arachidonate and glycerol in phospholipids of rat rod outer segments.
    Wetzel MG; O'Brien PJ
    Exp Eye Res; 1986 Dec; 43(6):941-54. PubMed ID: 3102272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential incorporation of docosahexaenoic and arachidonic acids in frog retinal pigment epithelium.
    Chen H; Anderson RE
    J Lipid Res; 1993 Nov; 34(11):1943-55. PubMed ID: 8263418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of uptake and incorporation of docosahexaenoic and arachidonic acids by frog retinas.
    Chen H; Anderson RE
    Curr Eye Res; 1993 Sep; 12(9):851-60. PubMed ID: 8261796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docosahexaenoic, arachidonic, palmitic, and oleic acids are differentially esterified into phospholipids of frog retina.
    Martin RE; Hopkins SA; Steven Brush R; Williamson C; Chen H; Anderson RE
    Prostaglandins Leukot Essent Fatty Acids; 2002; 67(2-3):105-11. PubMed ID: 12324228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscopic autoradiography.
    Gordon WC; Bazan NG
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2402-11. PubMed ID: 8325748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active labeling of phosphatidylcholines by [1-14C]docosahexaenoate in isolated photoreceptor membranes.
    Guisto NM; de Boschero MI; Sprecher H; Aveldaño MI
    Biochim Biophys Acta; 1986 Aug; 860(1):137-48. PubMed ID: 2942188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of linolenic acid and docosahexaenoic acid in rat retinas and rod outer segments.
    Wetzel MG; Li J; Alvarez RA; Anderson RE; O'Brien PJ
    Exp Eye Res; 1991 Oct; 53(4):437-46. PubMed ID: 1834476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: pharmacological manipulation of docosahexaenoic-phospholipid biosynthesis in photoreceptor cells: implications in retinal degeneration.
    Bazan NG; Rodriguez de Turco EB
    J Ocul Pharmacol; 1994; 10(3):591-604. PubMed ID: 7836869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewal of fatty acids in the membranes of visual cell outer segments.
    Bibb C; Young RW
    J Cell Biol; 1974 May; 61(2):327-43. PubMed ID: 4827908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of phosphatidylcholine in the frog retina.
    Anderson RE; Maude MB; Kelleher PA; Maida TM; Basinger SF
    Biochim Biophys Acta; 1980 Nov; 620(2):212-26. PubMed ID: 7002220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.