These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18348156)

  • 41. Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen.
    Liu JM; Jiao L; Lin LP; Cui ML; Wang XX; Zhang LH; Zheng ZY; Jiang SL
    Talanta; 2013 Dec; 117():425-30. PubMed ID: 24209363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Label-free biosensing with lipid-functionalized gold nanorods.
    Castellana ET; Gamez RC; Russell DH
    J Am Chem Soc; 2011 Mar; 133(12):4182-5. PubMed ID: 21384858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupling modes of gold trimer superstructures.
    Funston AM; Davis TJ; Novo C; Mulvaney P
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3472-82. PubMed ID: 21807722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy.
    Wang G; Sun W; Luo Y; Fang N
    J Am Chem Soc; 2010 Nov; 132(46):16417-22. PubMed ID: 21043495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes.
    Feng Y; Yang T; Zhang W; Jiang C; Jiao K
    Anal Chim Acta; 2008 Jun; 616(2):144-51. PubMed ID: 18482597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold nanorod arrays as plasmonic cavity resonators.
    Lyvers DP; Moon JM; Kildishev AV; Shalaev VM; Wei A
    ACS Nano; 2008 Dec; 2(12):2569-76. PubMed ID: 19206293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast statistical measurement of aspect ratio distribution of gold nanorod ensembles by optical extinction spectroscopy.
    Xu N; Bai B; Tan Q; Jin G
    Opt Express; 2013 Feb; 21(3):2987-3000. PubMed ID: 23481757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective release of multiple DNA oligonucleotides from gold nanorods.
    Wijaya A; Schaffer SB; Pallares IG; Hamad-Schifferli K
    ACS Nano; 2009 Jan; 3(1):80-6. PubMed ID: 19206252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-sensitive detection of cysteine by gold nanorod assembly.
    Huang H; Liu X; Hu T; Chu PK
    Biosens Bioelectron; 2010 May; 25(9):2078-83. PubMed ID: 20197234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability and electrostatic assembly of au nanorods for use in biological assays.
    Sethi M; Joung G; Knecht MR
    Langmuir; 2009 Jan; 25(1):317-25. PubMed ID: 19067523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence properties of gold nanorods and their application for DNA biosensing.
    Li CZ; Male KB; Hrapovic S; Luong JH
    Chem Commun (Camb); 2005 Aug; (31):3924-6. PubMed ID: 16075073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A solid-in-oil dispersion of gold nanorods can enhance transdermal protein delivery and skin vaccination.
    Pissuwan D; Nose K; Kurihara R; Kaneko K; Tahara Y; Kamiya N; Goto M; Katayama Y; Niidome T
    Small; 2011 Jan; 7(2):215-20. PubMed ID: 21213384
    [No Abstract]   [Full Text] [Related]  

  • 55. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA.
    Zhu N; Lin Y; Yu P; Su L; Mao L
    Anal Chim Acta; 2009 Sep; 650(1):44-8. PubMed ID: 19720171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering.
    Liu Y; Zhong M; Shan G; Li Y; Huang B; Yang G
    J Phys Chem B; 2008 May; 112(20):6484-9. PubMed ID: 18444675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence enhancement and end-to-end assembly of bisacridinedione-gold nanorods by calcium ions.
    Velu R; Jung S; Won N; Im K; Kim S; Park N
    Chemphyschem; 2012 Oct; 13(15):3445-8. PubMed ID: 22887360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets.
    Carbó-Argibay E; Rodríguez-González B; Gómez-Graña S; Guerrero-Martínez A; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Angew Chem Int Ed Engl; 2010 Dec; 49(49):9397-400. PubMed ID: 21053230
    [No Abstract]   [Full Text] [Related]  

  • 60. Bionanotube tetrapod assembly by in situ synthesis of a gold nanocluster with (Gp5-His6)3 from bacteriophage T4.
    Ueno T; Koshiyama T; Tsuruga T; Goto T; Kanamaru S; Arisaka F; Watanabe Y
    Angew Chem Int Ed Engl; 2006 Jul; 45(27):4508-12. PubMed ID: 16770820
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.