BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 18348539)

  • 1. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors.
    Ahn DJ; Kim JM
    Acc Chem Res; 2008 Jul; 41(7):805-16. PubMed ID: 18348539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors.
    Yoon B; Lee S; Kim JM
    Chem Soc Rev; 2009 Jul; 38(7):1958-68. PubMed ID: 19551176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polydiacetylene-based fluorescent sensor chip.
    Kim JM; Lee YB; Yang DH; Lee JS; Lee GS; Ahn DJ
    J Am Chem Soc; 2005 Dec; 127(50):17580-1. PubMed ID: 16351068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydiacetylene (PDA)-based colorimetric detection of biotin-streptavidin interactions.
    Jung YK; Park HG; Kim JM
    Biosens Bioelectron; 2006 Feb; 21(8):1536-44. PubMed ID: 16102961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polydiacetylene microchip based on a biotin-streptavidin interaction for the diagnosis of pathogen infections.
    Jung YK; Kim TW; Jung C; Cho DY; Park HG
    Small; 2008 Oct; 4(10):1778-84. PubMed ID: 18819132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric and fluorometric assays based on conjugated polydiacetylene supramolecules for screening acetylcholinesterase and its inhibitors.
    Zhou G; Wang F; Wang H; Kambam S; Chen X; Yoon J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3275-80. PubMed ID: 23544614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanoscale vesicular polydiacetylene sensor for organic amines by fluorescence recovery.
    Ma G; Cheng Q
    Talanta; 2005 Sep; 67(3):514-9. PubMed ID: 18970198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Patterned Polydiacetylene Composite Films Using a Replica-Molding (REM) Technique.
    Yarimaga O; Lee S; Kim JM; Choi YK
    Macromol Rapid Commun; 2010 Feb; 31(3):270-4. PubMed ID: 21590901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent colorimetric paper-based polydiacetylene sensors from diacetylene lipids.
    Pumtang S; Siripornnoppakhun W; Sukwattanasinitt M; Ajavakom A
    J Colloid Interface Sci; 2011 Dec; 364(2):366-72. PubMed ID: 21943512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbead-assisted PDA sensor for the detection of genetically modified organisms.
    Lim MC; Shin YJ; Jeon TJ; Kim HY; Kim YR
    Anal Bioanal Chem; 2011 May; 400(3):777-85. PubMed ID: 21387154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices.
    Ryu S; Yoo I; Song S; Yoon B; Kim JM
    J Am Chem Soc; 2009 Mar; 131(11):3800-1. PubMed ID: 19249842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed self-assembly of polydiacetylenes for highly specific and sensitive strip biosensors.
    Park HK; Chung SJ; Park HG; Cho JH; Kim M; Chung BH
    Biosens Bioelectron; 2008 Nov; 24(3):480-4. PubMed ID: 18650078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric detection and fingerprinting of bacteria by glass-supported lipid/polydiacetylene films.
    Scindia Y; Silbert L; Volinsky R; Kolusheva S; Jelinek R
    Langmuir; 2007 Apr; 23(8):4682-7. PubMed ID: 17371063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of polydiacetylene immobilized optically encoded beads.
    Jun BH; Baek J; Kang H; Park YJ; Jeong DH; Lee YS
    J Colloid Interface Sci; 2011 Mar; 355(1):29-34. PubMed ID: 21194704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydiacetylene-based electrospun fibers for detection of HCl gas.
    Jeon H; Lee J; Kim MH; Yoon J
    Macromol Rapid Commun; 2012 Jun; 33(11):972-6. PubMed ID: 22492472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric/fluorescent bacterial sensing by agarose-embedded lipid/polydiacetylene films.
    Meir D; Silbert L; Volinsky R; Kolusheva S; Weiser I; Jelinek R
    J Appl Microbiol; 2008 Mar; 104(3):787-95. PubMed ID: 17973915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence signal enhancement of polydiacetylene vesicle stacks.
    Choi H; Choi IS; Lee GS; Ahn DJ
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6203-7. PubMed ID: 22121685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized ureido substituted diacetylenic organogel. Photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers.
    Dautel OJ; Robitzer M; Lère-Porte JP; Serein-Spirau F; Moreau JJ
    J Am Chem Soc; 2006 Dec; 128(50):16213-23. PubMed ID: 17165774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oriented protein immobilization using covalent and noncovalent chemistry on a thiol-reactive self-reporting surface.
    Wasserberg D; Nicosia C; Tromp EE; Subramaniam V; Huskens J; Jonkheijm P
    J Am Chem Soc; 2013 Feb; 135(8):3104-11. PubMed ID: 23379762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.