These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 18348544)
1. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. van Duin AC; Merinov BV; Jang SS; Goddard WA J Phys Chem A; 2008 Apr; 112(14):3133-40. PubMed ID: 18348544 [TBL] [Abstract][Full Text] [Related]
2. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731 [TBL] [Abstract][Full Text] [Related]
3. ReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell. Merinov BV; Mueller JE; van Duin AC; An Q; Goddard WA J Phys Chem Lett; 2014 Nov; 5(22):4039-43. PubMed ID: 26276491 [TBL] [Abstract][Full Text] [Related]
4. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Oh EO; Whang CM; Lee YR; Park SY; Prasad DH; Yoon KJ; Son JW; Lee JH; Lee HW Adv Mater; 2012 Jul; 24(25):3373-7. PubMed ID: 22648864 [TBL] [Abstract][Full Text] [Related]
5. Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: an atomistic simulation study. Sankaranarayanan SK; Ramanathan S J Chem Phys; 2011 Feb; 134(6):064703. PubMed ID: 21322717 [TBL] [Abstract][Full Text] [Related]
6. Reactive force field simulation of proton diffusion in BaZrO3 using an empirical valence bond approach. Raiteri P; Gale JD; Bussi G J Phys Condens Matter; 2011 Aug; 23(33):334213. PubMed ID: 21813946 [TBL] [Abstract][Full Text] [Related]
7. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. De Souza RA; Pietrowski MJ; Anselmi-Tamburini U; Kim S; Munir ZA; Martin M Phys Chem Chem Phys; 2008 Apr; 10(15):2067-72. PubMed ID: 18688360 [TBL] [Abstract][Full Text] [Related]
8. Preparation of YSZ-TZP solid electrolytes by gel-casting technology. Li G; Ren R J Environ Sci (China); 2011 Jun; 23 Suppl():S170-2. PubMed ID: 25084586 [TBL] [Abstract][Full Text] [Related]
9. Defect interactions and ionic transport in scandia stabilized zirconia. Devanathan R; Thevuthasan S; Gale JD Phys Chem Chem Phys; 2009 Jul; 11(26):5506-11. PubMed ID: 19551221 [TBL] [Abstract][Full Text] [Related]
10. Development of Density-Functional Tight-Binding Parameters for the Molecular Dynamics Simulation of Zirconia, Yttria, and Yttria-Stabilized Zirconia. Hutama AS; Marlina LA; Chou CP; Irle S; Hofer TS ACS Omega; 2021 Aug; 6(31):20530-20548. PubMed ID: 34395999 [TBL] [Abstract][Full Text] [Related]
11. Scalable nanostructured membranes for solid-oxide fuel cells. Tsuchiya M; Lai BK; Ramanathan S Nat Nanotechnol; 2011 May; 6(5):282-6. PubMed ID: 21460827 [TBL] [Abstract][Full Text] [Related]
12. High Temperature Fabrication of Nanostructured Yttria-Stabilized-Zirconia (YSZ) Scaffolds by In Situ Carbon Templating Xerogels. Muhoza SP; Cottam MA; Gross MD J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447983 [TBL] [Abstract][Full Text] [Related]
13. Electrochemistry of mixed oxygen ion and electron conducting electrodes in solid electrolyte cells. Chueh WC; Haile SM Annu Rev Chem Biomol Eng; 2012; 3():313-41. PubMed ID: 22483265 [TBL] [Abstract][Full Text] [Related]
14. Development of the ReaxFF Methodology for Electrolyte-Water Systems. Fedkin MV; Shin YK; Dasgupta N; Yeon J; Zhang W; van Duin D; van Duin ACT; Mori K; Fujiwara A; Machida M; Nakamura H; Okumura M J Phys Chem A; 2019 Mar; 123(10):2125-2141. PubMed ID: 30775922 [TBL] [Abstract][Full Text] [Related]
15. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Muñoz-García AB; Ritzmann AM; Pavone M; Keith JA; Carter EA Acc Chem Res; 2014 Nov; 47(11):3340-8. PubMed ID: 24972154 [TBL] [Abstract][Full Text] [Related]
16. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. Fantauzzi D; Bandlow J; Sabo L; Mueller JE; van Duin AC; Jacob T Phys Chem Chem Phys; 2014 Nov; 16(42):23118-33. PubMed ID: 25250822 [TBL] [Abstract][Full Text] [Related]
17. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-ion transport in a dual-phase scandia-yttria-stabilized zirconia solid electrolyte: a molecular dynamics simulation. Chang KS; Tung KL Chemphyschem; 2009 Aug; 10(11):1887-94. PubMed ID: 19562791 [TBL] [Abstract][Full Text] [Related]
19. Direct in situ probe of electrochemical processes in operating fuel cells. Nonnenmann SS; Kungas R; Vohs J; Bonnell DA ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103 [TBL] [Abstract][Full Text] [Related]
20. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers. Fan Z; Prinz FB Nano Lett; 2011 Jun; 11(6):2202-5. PubMed ID: 21563786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]