These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18348559)

  • 1. Effect of polymer microenvironment on excitation energy migration and transfer.
    Misra V; Mishra H
    J Phys Chem B; 2008 Apr; 112(14):4213-22. PubMed ID: 18348559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of diffusion in excitation energy transfer and migration.
    Misra V; Mishra H
    J Chem Phys; 2007 Sep; 127(9):094511. PubMed ID: 17824752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.
    Banerjee C; Kundu N; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Aug; 117(32):9508-17. PubMed ID: 23865472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins.
    Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ
    J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer studies in binary dye solution mixtures: Acriflavine+Rhodamine 6G and Acriflavine+Rhodamine B.
    Sahare PD; Sharma VK; Mohan D; Rupasov AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1257-64. PubMed ID: 17765006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations.
    Tripathy U; Bisht PB
    J Chem Phys; 2006 Oct; 125(14):144502. PubMed ID: 17042604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanophotonic control of the Förster resonance energy transfer efficiency.
    Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL
    Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy.
    Hinze G; Métivier R; Nolde F; Müllen K; Basché T
    J Chem Phys; 2008 Mar; 128(12):124516. PubMed ID: 18376952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady state and time-resolved spectroscopic studies of 7-hydroxyquinoline in various polymeric matrices.
    Mehata MS; Joshi HC; Tripathi HB
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1589-98. PubMed ID: 12166730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of energy transfer from 7-amino coumarin donors to the rhodamine 6G acceptor in lecithin vesicles and sodium taurocholate-lecithin mixed aggregates.
    Seth D; Chakraborty A; Setua P; Chakrabarty D; Sarkar N
    J Phys Chem B; 2005 Jun; 109(24):12080-5. PubMed ID: 16852490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.
    Osad'ko IS; Shchukina AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic excitation energy transfer between two single molecules embedded in a polymer host.
    Métivier R; Nolde F; Müllen K; Basché T
    Phys Rev Lett; 2007 Jan; 98(4):047802. PubMed ID: 17358814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Förster resonance energy transfer and excited state life time reduction of rhodamine 6G with NiO nanorods in PVP films.
    Karthikeyan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():301-306. PubMed ID: 27673498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast fluorescence resonance energy transfer in a micelle.
    Sahu K; Ghosh S; Mondal SK; Ghosh BC; Sen P; Roy D; Bhattacharyya K
    J Chem Phys; 2006 Jul; 125(4):44714. PubMed ID: 16942181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What type of nanoscopic environment does a cationic fluorophore experience in room temperature ionic liquids?
    Ghosh A; De CK; Chatterjee T; Mandal PK
    Phys Chem Chem Phys; 2015 Jul; 17(25):16587-93. PubMed ID: 26055159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of Rh 6G dye in liquid and solid polymer.
    Dwivedi Y; Rai SB; Thakur SN
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):789-93. PubMed ID: 17602863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
    Mandal P; Bardhan M; Ganguly T
    J Photochem Photobiol B; 2010 May; 99(2):78-86. PubMed ID: 20346694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence characteristics and photostability of benzoxazole derived donor-acceptor dyes in constrained media.
    Fayed TA; Etaiw Sel-D
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):366-71. PubMed ID: 16500138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of spectral heterogeneity of prodan and laurdan solutions on the transfer of electronic energy to octadecyl rhodamine B.
    Kozyra KA; Heldt JR; Heldt J
    Biophys Chem; 2006 Apr; 121(1):57-64. PubMed ID: 16443320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.