These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 18348643)
1. A screening method for toxicity identification evaluation on an industrial effluent using Chelex-100 resin and chelators for specific metals. Onikura N; Kishi K; Nakamura A; Takeuchi S Environ Toxicol Chem; 2008 Feb; 27(2):266-71. PubMed ID: 18348643 [TBL] [Abstract][Full Text] [Related]
2. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea. Kim E; Jun YR; Jo HJ; Shim SB; Jung J Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429 [TBL] [Abstract][Full Text] [Related]
3. [Toxicity identification evaluation on efficiency of chemical effluent treatment]. Yang Y; Yu H; Cui Y; Jin H; Tang S; Zhou C Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):105-9. PubMed ID: 12722450 [TBL] [Abstract][Full Text] [Related]
4. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Neculita CM; Vigneault B; Zagury GJ Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688 [TBL] [Abstract][Full Text] [Related]
5. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa. Yi X; Kang SW; Jung J J Hazard Mater; 2010 Jun; 178(1-3):982-7. PubMed ID: 20211525 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of wastewater effluents by small-scale biotests and a fractionation procedure. Pessala P; Schultz E; Nakari T; Joutti A; Herve S Ecotoxicol Environ Saf; 2004 Oct; 59(2):263-72. PubMed ID: 15327886 [TBL] [Abstract][Full Text] [Related]
7. Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region. Fang YX; Ying GG; Zhang LJ; Zhao JL; Su HC; Yang B; Liu S Ecotoxicol Environ Saf; 2012 Feb; 76(2):143-52. PubMed ID: 22019309 [TBL] [Abstract][Full Text] [Related]
8. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent. Brix KV; Gerdes R; Grosell M Ecotoxicol Environ Saf; 2010 Oct; 73(7):1646-52. PubMed ID: 20621355 [TBL] [Abstract][Full Text] [Related]
9. Assessment of toxicity reduction in wastewater effluent flowing through a treatment wetland using Pimephales promelas, Ceriodaphnia dubia, and Vibrio fischeri. Hemming JM; Turner PK; Brooks BW; Waller WT; La Point TW Arch Environ Contam Toxicol; 2002 Jan; 42(1):9-16. PubMed ID: 11706362 [TBL] [Abstract][Full Text] [Related]
10. Ecotoxicological assessment of industrial wastewaters in Trancão River Basin (Portugal). Picado A; Mendonça E; Silva L; Paixão SM; Brito F; Cunha MA; Leitão S; Moura I; Hernan R Environ Toxicol; 2008 Aug; 23(4):466-72. PubMed ID: 18214883 [TBL] [Abstract][Full Text] [Related]
11. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. Butler BA; Smith ME; Reisman DJ; Lazorchak JM Environ Toxicol Chem; 2011 Feb; 30(2):385-92. PubMed ID: 21072838 [TBL] [Abstract][Full Text] [Related]
12. Wastewater treatment polymers identified as the toxic component of a diamond mine effluent. De Rosemond SJ; Liber K Environ Toxicol Chem; 2004 Sep; 23(9):2234-42. PubMed ID: 15379002 [TBL] [Abstract][Full Text] [Related]
13. Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita. Muley DV; Karanjkar DM; Maske SV J Environ Biol; 2007 Apr; 28(2):245-9. PubMed ID: 17915759 [TBL] [Abstract][Full Text] [Related]
14. Strategies for decolorization and detoxification of pulp and paper mill effluent. Garg SK; Tripathi M Rev Environ Contam Toxicol; 2011; 212():113-36. PubMed ID: 21432056 [TBL] [Abstract][Full Text] [Related]
15. Reduction in labile copper in the 7-day Ceriodaphnia dubia toxicity test due to the interaction with zooplankton food. Hauri JF; Horne AJ Chemosphere; 2004 Aug; 56(7):717-23. PubMed ID: 15234169 [TBL] [Abstract][Full Text] [Related]
16. Application of toxicity identification evaluation procedures for characterizing produced water using the tropical mysid, Metamysidopsis insularis. Elias-Samlalsingh N; Agard JB Environ Toxicol Chem; 2004 May; 23(5):1194-203. PubMed ID: 15180370 [TBL] [Abstract][Full Text] [Related]
17. Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: divergent results of field and laboratory tests. Wilkie EM; Roach AC; Micevska T; Kelaher BP; Bishop MJ Environ Pollut; 2010 May; 158(5):1261-9. PubMed ID: 20193975 [TBL] [Abstract][Full Text] [Related]
18. Removal of phenol from saline water by polyamine chelating resin. Yamada A; Matsui A; Tsuji H Water Sci Technol; 2013; 68(8):1819-24. PubMed ID: 24185065 [TBL] [Abstract][Full Text] [Related]
19. SP70-alpha-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples. Narin I; Surme Y; Bercin E; Soylak M J Hazard Mater; 2007 Jun; 145(1-2):113-9. PubMed ID: 17145131 [TBL] [Abstract][Full Text] [Related]
20. Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters. Perez M; Simpson SL; Lespes G; King JJ; Adams MS; Jarolimek CV; Grassl B; Schaumlöffel D Chemosphere; 2016 Dec; 164():7-13. PubMed ID: 27568367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]