BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18348680)

  • 61. Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson's disease.
    Migliore MM; Ortiz R; Dye S; Campbell RB; Amiji MM; Waszczak BL
    Neuroscience; 2014 Aug; 274():11-23. PubMed ID: 24845869
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Future therapies for Parkinson's disease.
    Hauser RA; Lyons KE
    Neurol Clin; 2004 Oct; 22(3 Suppl):S149-66. PubMed ID: 15501363
    [No Abstract]   [Full Text] [Related]  

  • 63. AAV2-Neurturin for Parkinson's Disease: What Lessons Have We Learned?
    Kordower JH
    Methods Mol Biol; 2016; 1382():485-90. PubMed ID: 26611606
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adenoviral vector-mediated delivery of glial cell line-derived neurotrophic factor provides neuroprotection in the aged parkinsonian rat.
    Connor B
    Clin Exp Pharmacol Physiol; 2001 Nov; 28(11):896-900. PubMed ID: 11703392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Repairing the parkinsonian brain with neurotrophic factors.
    Aron L; Klein R
    Trends Neurosci; 2011 Feb; 34(2):88-100. PubMed ID: 21144600
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production.
    Sajadi A; Bauer M; Thöny B; Aebischer P
    J Neurochem; 2005 Jun; 93(6):1482-6. PubMed ID: 15935064
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effective GDNF brain delivery using microspheres--a promising strategy for Parkinson's disease.
    Garbayo E; Montero-Menei CN; Ansorena E; Lanciego JL; Aymerich MS; Blanco-Prieto MJ
    J Control Release; 2009 Apr; 135(2):119-26. PubMed ID: 19154763
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Micro- and nanotechnology approaches to improve Parkinson's disease therapy.
    Torres-Ortega PV; Saludas L; Hanafy AS; Garbayo E; Blanco-Prieto MJ
    J Control Release; 2019 Feb; 295():201-213. PubMed ID: 30579984
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Has drug therapy changed the natural history of Parkinson's disease?
    Clarke CE
    J Neurol; 2010 Nov; 257(Suppl 2):S262-7. PubMed ID: 21080187
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson's disease.
    Tereshchenko J; Maddalena A; Bähr M; Kügler S
    Neurobiol Dis; 2014 May; 65():35-42. PubMed ID: 24440408
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system.
    Paumier KL; Sortwell CE; Madhavan L; Terpstra B; Daley BF; Collier TJ
    Exp Neurol; 2015 Apr; 266():11-21. PubMed ID: 25681575
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 6-Hydroxydopamine induces distinct alterations in GDF5 and GDNF mRNA expression in the rat nigrostriatal system in vivo.
    Gavin AM; Walsh S; Wyatt S; O'Keeffe GW; Sullivan AM
    Neurosci Lett; 2014 Feb; 561():176-81. PubMed ID: 24373993
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor.
    Slevin JT; Gerhardt GA; Smith CD; Gash DM; Kryscio R; Young B
    J Neurosurg; 2005 Feb; 102(2):216-22. PubMed ID: 15739547
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal.
    Slevin JT; Gash DM; Smith CD; Gerhardt GA; Kryscio R; Chebrolu H; Walton A; Wagner R; Young AB
    J Neurosurg; 2007 Apr; 106(4):614-20. PubMed ID: 17432712
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole.
    Albrecht S; Buerger E
    Curr Med Res Opin; 2009 Dec; 25(12):2977-87. PubMed ID: 19842998
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson's disease after administration into the striatum or the lateral ventricle.
    Rosenblad C; Kirik D; Devaux B; Moffat B; Phillips HS; Björklund A
    Eur J Neurosci; 1999 May; 11(5):1554-66. PubMed ID: 10215908
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Drug Delivery for Movement Disorders.
    Barua N; Gill S
    Prog Neurol Surg; 2018; 33():243-252. PubMed ID: 29332088
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ; Kaplitt MG; Stern MB; Eidelberg D
    Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson's disease.
    Dietz GP; Valbuena PC; Dietz B; Meuer K; Müeller P; Weishaupt JH; Bähr M
    Brain Res; 2006 Apr; 1082(1):61-6. PubMed ID: 16703672
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selegiline rescues gait deficits and the loss of dopaminergic neurons in a subacute MPTP mouse model of Parkinson's disease.
    Zhao Q; Cai D; Bai Y
    Int J Mol Med; 2013 Oct; 32(4):883-91. PubMed ID: 23877198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.