These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18348974)

  • 1. Wake attenuation in large Reynolds number dispersed two-phase flows.
    Risso F; Roig V; Amoura Z; Riboux G; Billet AM
    Philos Trans A Math Phys Eng Sci; 2008 Jun; 366(1873):2177-90. PubMed ID: 18348974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders.
    van Gils DP; Bruggert GW; Lathrop DP; Sun C; Lohse D
    Rev Sci Instrum; 2011 Feb; 82(2):025105. PubMed ID: 21361631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local structure of turbulence in flows with large Reynolds numbers.
    Praskovsky AA
    Chaos; 1991 Aug; 1(2):237-241. PubMed ID: 12779920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Surfactant on the Motion of a Buoyancy-Driven Drop at Intermediate Reynolds Numbers: A Numerical Approach.
    Li Xj XJ; Mao ZS
    J Colloid Interface Sci; 2001 Aug; 240(1):307-322. PubMed ID: 11446814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of energy in flow driven by rising bubbles.
    Mazzitelli IM; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066317. PubMed ID: 19658604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative drag coefficient in the wake of an isolated bluff body.
    Alam MM; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036320. PubMed ID: 18851156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental determination of probe-length requirements for studies of the turbulent wake behind a cylinder.
    Sheih CM; Finnigan JJ; Bradley EF; Mulhearn PJ
    Rev Sci Instrum; 1979 May; 50(5):528. PubMed ID: 18699545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of turbulent energy dissipation rate of fluid flow in the vicinity of dispersed phase boundary using spatiotemporal tree model.
    Sikiö P; Jalali P
    Chaos; 2014 Dec; 24(4):043139. PubMed ID: 25554059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation.
    Frank X; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056307. PubMed ID: 17279993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of wind turbine wakes using the actuator line technique.
    Sørensen JN; Mikkelsen RF; Henningson DS; Ivanell S; Sarmast S; Andersen SJ
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some predictions of the attached eddy model for a high Reynolds number boundary layer.
    Nickels TB; Marusic I; Hafez S; Hutchins N; Chong MS
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):807-22. PubMed ID: 17244588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.
    Jamshidi R; Brenner G
    Ultrason Sonochem; 2014 Jan; 21(1):154-61. PubMed ID: 23751457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of initial conditions on a wavelet-decomposed turbulent near-wake.
    Rinoshika A; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046303. PubMed ID: 15903782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drag on two coaxial, nonuniformly structured flocs in a uniform flow field.
    Hsu JP; Yeh SJ; Lee DJ
    J Colloid Interface Sci; 2005 Dec; 292(1):290-8. PubMed ID: 16024032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of low Reynolds number turbulent pipe flow.
    Duggleby A; Ball KS; Schwaenen M
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):473-88. PubMed ID: 18990657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number.
    Cartellier A; Andreotti M; Sechet P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065301. PubMed ID: 20365222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors.
    Stallard T; Collings R; Feng T; Whelan J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120159. PubMed ID: 23319702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions.
    Bonn D; Ingremeau F; Amarouchene Y; Kellay H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):045301. PubMed ID: 22181216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbulent wake solutions of the Prandtl alpha equations.
    Putkaradze V; Weidman P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036304. PubMed ID: 12689162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.