BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18349903)

  • 1. Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media.
    Qu JY; Huang Z; Hua J
    Appl Opt; 2000 Jul; 39(19):3344-56. PubMed ID: 18349903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta.
    Keijzer M; Richards-Kortum RR; Jacques SL; Feld MS
    Appl Opt; 1989 Oct; 28(20):4286-92. PubMed ID: 20555864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model for extracting intrinsic fluorescence in turbid media.
    Wu J; Feld MS; Rava RP
    Appl Opt; 1993 Jul; 32(19):3585-95. PubMed ID: 20829983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Monte Carlo simulation with ray tracing for fluorescence measurements in turbid media.
    Lee SY; Mycek MA
    Opt Lett; 2018 Aug; 43(16):3846-3849. PubMed ID: 30106898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media.
    Gebhart SC; Mahadevan-Jansen A; Lin WC
    Appl Opt; 2005 Aug; 44(23):4884-901. PubMed ID: 16114526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times.
    Pichette J; Domínguez JB; Bérubé-Lauzière Y
    Appl Opt; 2013 Aug; 52(24):5985-99. PubMed ID: 24085003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo modelling of fluorescence in semi-infinite turbid media.
    Ong YH; Finlay JC; Zhu TC
    Proc SPIE Int Soc Opt Eng; 2018; 10492():. PubMed ID: 29853731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence.
    Gardner CM; Jacques SL; Welch AJ
    Appl Opt; 1996 Apr; 35(10):1780-92. PubMed ID: 21085302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction.
    Studinski RC; Vitkin IA
    J Biomed Opt; 2000 Jul; 5(3):330-7. PubMed ID: 10958620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clean image synthesis and target numerical marching for optical imaging with backscattering light.
    Xu M; Pu Y; Wang W
    Biomed Opt Express; 2011 Mar; 2(4):850-7. PubMed ID: 21483608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation.
    Gan X; Gu M
    Appl Opt; 2000 Apr; 39(10):1575-9. PubMed ID: 18345054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field Monte Carlo simulation of polarized light propagation in turbid media.
    Xu M
    Opt Express; 2004 Dec; 12(26):6530-9. PubMed ID: 19488304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-color excitation fluorescence microscopy through highly scattering media.
    Blanca CM; Saloma C
    Appl Opt; 2001 Jun; 40(16):2722-9. PubMed ID: 18357289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backscattering target detection in a turbid medium by use of circularly and linearly polarized light.
    Kartazayeva SA; Ni X; Alfano RR
    Opt Lett; 2005 May; 30(10):1168-70. PubMed ID: 15943299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of reflectance imaging using a parallel Monte Carlo method.
    Chen C; Lu JQ; Li K; Zhao S; Brock RS; Hu XH
    Med Phys; 2007 Jul; 34(7):2939-48. PubMed ID: 17822002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.