These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18350012)

  • 1. Birefringence control in plasma-enhanced chemical vapor deposition planar waveguides by ultraviolet irradiation.
    Canning J; Aslund M; Ankiewicz A; Dainese M; Fernando H; Sahu JK; Wosinski L
    Appl Opt; 2000 Aug; 39(24):4296-9. PubMed ID: 18350012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings.
    Canning J; Aslund M
    Opt Lett; 1999 Apr; 24(7):463-5. PubMed ID: 18071540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosensitivity in silica-based waveguides deposited by atmospheric pressure chemical vapor deposition.
    Saito T; Hanada T; Kitamura N; Kitamura M
    Appl Opt; 1998 Apr; 37(12):2242-4. PubMed ID: 18273148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced ultraviolet photosensitivity and lowered temperature-dependent performance of Ge-doped SiO2 planar waveguides with boron doping.
    Zhang Q
    Opt Express; 2005 Oct; 13(22):8717-24. PubMed ID: 19498904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress.
    Xu DX; Cheben P; Dalacu D; Delâge A; Janz S; Lamontagne B; Picard MJ; Ye WN
    Opt Lett; 2004 Oct; 29(20):2384-6. PubMed ID: 15532275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosensitive GeO2-SiO2 films for ultraviolet laser writing of channel waveguides and bragg gratings with Cr-loaded waveguide structure.
    Takahashi M; Sakoh A; Ichii K; Tokuda Y; Yoko T; Nishii J
    Appl Opt; 2003 Aug; 42(22):4594-8. PubMed ID: 12916627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-induced birefringence control in optical planar waveguides.
    Zhao X; Li C; Xu YZ
    Opt Lett; 2003 Apr; 28(7):564-6. PubMed ID: 12696616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced birefringence in vacuum evaporated silicon thin films.
    Beydaghyan G; Kaminska K; Brown T; Robbie K
    Appl Opt; 2004 Oct; 43(28):5343-9. PubMed ID: 15495425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot-wire polysilicon waveguides with low deposition temperature.
    Masaud TM; Tarazona A; Jaberansary E; Chen X; Reed GT; Mashanovich GZ; Chong HM
    Opt Lett; 2013 Oct; 38(20):4030-2. PubMed ID: 24321913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength.
    Bruno F; Guidice MD; Recca R; Testa F
    Appl Opt; 1991 Nov; 30(31):4560-4. PubMed ID: 20717249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.
    Prajzler V; Varga M; Nekvindova P; Remes Z; Kromka A
    Opt Express; 2013 Apr; 21(7):8417-25. PubMed ID: 23571931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact and low-loss bent hollow waveguides with distributed Bragg reflector.
    Chiu HK; Hsiao FL; Chan CH; Chen CC
    Opt Express; 2008 Sep; 16(19):15069-73. PubMed ID: 18795044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex photosensitivity observed in germanosilica planar waveguides.
    Bazylenko MV; Moss D; Canning J
    Opt Lett; 1998; 23(9):697-9. PubMed ID: 18087313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stresses in optical waveguides.
    Huang M
    Opt Lett; 2003 Dec; 28(23):2327-9. PubMed ID: 14680171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-birefringence direct UV-written waveguides for use as heralded single-photon sources at telecommunication wavelengths.
    Posner MT; Hiemstra T; Mennea PL; Bannerman RHS; Hoff UB; Eckstein A; Steven Kolthammer W; Walmsley IA; Smith DH; Gates JC; Smith PGR
    Opt Express; 2018 Sep; 26(19):24678-24686. PubMed ID: 30469580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2012 Oct; 20(22):24103-14. PubMed ID: 23187173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Time Relaxation of Stress-Induced Birefringence of Microcrystalline Alkali Halide Crystals.
    Ueno H; Arakane R; Matsumoto Y; Tsumura T; Kitazaki A; Takahashi T; Hirao S; Ohga Y; Harada T
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29587395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable waveguides via photo-oxidation of plasma-polymerized organosilicon films.
    Lock JP; Gleason KK
    Appl Opt; 2005 Mar; 44(9):1691-7. PubMed ID: 15813272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor deposition of a smectic liquid crystal: highly anisotropic, homogeneous glasses with tunable molecular orientation.
    Gómez J; Jiang J; Gujral A; Huang C; Yu L; Ediger MD
    Soft Matter; 2016 Mar; 12(11):2942-7. PubMed ID: 26875700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.